Soft Condensed Matter & Biophysics

literally just means
that it's soft Fancy word for

Department of Physics

Physics meets biology

solids and liquids

Don't be afraid of this!

Tjom Arens | t.arens@uu.nl | www.colloid.nl

U.S.S. Proton SIA | October 24th, 2023

Colloids: the workhorses of our group

Orders of magnitude

Colloidal crystals

What makes these colloids interesting?

They're really at the interface of atoms and the macroscopic world

"Atom like" colloidal quantum dots

QD solar cells

QD lasers

Colloidal crystals

Self Assembly: spontaneous organisation of particles into an ordered structure

As these particles are much larger than atoms, we can see their 3D structure using microscopy

Imaging in 3D

Applications: Structural colour

E-ink

Research topics

Self-assembly (for catalysis)

Studying different methodologies for silica growth on core nanoparticles for use in self-assembled catalysts

Arnout Imhof

Single-particle spectroscopy

Single Quantum dots

Nanothermometry

Nano catalytic reactors

In situ electron microscopy

Bio-inspired materials

Uncover the fundamental organizing principles of soft and biological materials, with a special focus on liquid crystals.

Biophysics

Investigate DNA processing using magnetic tweezers

Visualize nucleosomes (the building blocks of our chromosomes) using atomic force microscopy

Simulations

- Trying to understand self-assembly using advanced computer simulations
- Strong coupling between experiments, simulation and theory!

Laura Filion

Marjolein Dijkstra

Experimental

Biophysics

Simulations

~50/50 chemistry/physics

^{~30} PhD students, 7 postdocs

But what kind of things do you really do?

real chemistry! (organic and inorganic)

microfluidics

spectroscopy, light scattering, single photon measurements

Lots of microscopy (electron and optical/fluorescence)

plotting, programming, modelling

I (might) want to do a project! What do I need to do? Where can I find information?

- Some example projects:
 - https://edu.nl/ffuug (or the QR code at top right)
- More information about the group: www.colloid.nl
- Contact person for experimental projects: Arnout Imhof: A.Imhof@uu.nl
- Contact for theoretical/simulations projects:
 - Laura Filion: L.C.Filion@uu.nl

Example projects

Synthesis of monodisperse nanoparticles for (binary) self-assembly

Bimetallic NiPd 10 nm

SiO₂ 12 nm

 Fe_xO_y core + SiO_2 41 nm

Quantitative Real-Space Analysis of Binary Nucleation and Growth of Colloidal Crystals

- Research Question: Classical nucleation theory (CNT) is over 100 years old but has never been tested yet experimentally on single particle level.
- Skills and subjects to learn:
 - Quantitative real-space analysis using confocal light nanoscopy and fluorescent core-shell colloids...
- Keywords: CNT, confocal microscopy, bond order analysis

Crystals of Crystals of NanoCrystals

- Research Question: Structuring matter at multiple length scales is important to realize materials with new properties (e.g. negative index of refraction, photonic band gap)
- Skills and subjects to learn:
 - Quantitative real-space analysis using microscopy at multiple length scales...
- Keywords: confocal microscopy, electron tomography, microfluidics

Alfons van Blaaderen

Double BSc Projects: Chem./Phys., Phys./Math. & Exp./Theory

- Research Question: Research within the Soft Condensed Matter group often is helped by a multidisciplinary approach and therefore well suited for double BSc projects on wide range of topics (enquire!)
- Skills and subjects to learn:
 - Combining views from different disciplines in one coherent research project...
- **Keywords:** Chem./Phys., Phys./Math/, Exp./Theory,...

Structural Color in Bio-materials

• **Research Question:** How does the shape of bio-derived, cellulose particles affect the structural color of their assemblies?

• Skills and subjects to learn:

- Wet-lab work
- Optical microscopy
- Self-assembly
- Keywords: Bio-inspired materials, liquid crystals

Visit sites.google.com/view/tran-group for more information.

Lipid assembly in liquid crystals

- Research Question: Lipids make up cell membranes, but how does an anisotropic environment affect their assembly?
- Skills and subjects to learn:
 - Wet-lab work
 - Confocal microscopy
 - Self-assembly
- Keywords: Bio-inspired materials, liquid crystals

Visit sites.google.com/view/tran-group for more information.

Highly Parallelized Magnetic Tweezers for Single-Molecule Force Spectroscopy

- Research Question: Develop a high-throughput single-molecule assay to determine how proteins respond to and are regulated by mechanical forces.
- Skills and subjects to learn:
 - Single-molecule force measurements using magnetic tweezers
 - Image analysis, automation, and magnetic field modeling
- Keywords: Single-molecule force spectroscopy, magnetic tweezers, protein regulation

Revealing the Players of HIV Integration Using High-Resolution AFM Imaging

- **Research Question:** What is the molecular environment of HIV integration?
- Skills and subjects to learn:
 - Preparation of DNA and protein samples
 - AFM imaging of biomolecular complexes
 - Quantitative image analysis and modeling
- **Keywords:** Atomic force microscopy (AFM), HIV integration, quantitative image analysis

Can we machine learn colloidal liquids to nucleate?

- Research Question: Can we use machine learning to find the best reaction coordinate to learn colloidal particles to crystallize?
- Skills and subjects to learn:
 - Programming skills
 - Machine Learning
- Keywords: Monte Carlo simulations

Reaction coordinate

Machine Learning & Soft Matter

 Research Question: How can we speed up simulations using advanced data analysis?

Skills and subjects to learn:

- C programming
- Python
- Statistical Physics
- Machine Learning

Machine Learning Structure

- Research Question: How can we use advanced data analysis techniques to better understand how systems self-assemble?
- Skills and subjects to learn:
 - C programming
 - Python
 - Statistical Physics
 - Machine Learning

