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Opgave 1 (6) 
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Voor stationaire punten geldt  !f
!x

= 0  en  
!f

!y
= 0  

!f

!x
= 12x

2
" 6xy = 0  levert   x = 0   of  y = 2x  

Bij x = 0 hoort   3y
2
! 9 = 0      en dus    y = 3  en  y = ! 3  

Bij y = 2x volgt:  !3x
2
+12x

2
! 9 = 0      en dus    x = 1  en  x = !1  

Stationaire punten zijn dus  (0, 3) , (0,! 3) , (1,2)  en  (!1,!2)   

punt  fxx  fyy  fxy  fxx fyy ‐ (fxy)2  aard 

(0, √3)  ‐6√3  6√3  0  ‐108  zadelpunt 

(0, ‐√3)  6√3  ‐6√3  0  ‐108  zadelpunt 

(1, 2)  12  12  ‐6  108  minimum 

(‐1, ‐2)  ‐12  ‐12  6  108  maximum 

 

Opgave 2 (4) 
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Opgave 3 (2 ‐ 6) 

a.  2 ! r ! 4   en   0 ! " !
#
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b.  Er geldt:  x = r cos(t) , y = r sin(t)   en  pas op!!!   dA = r !drd"
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Opgave 4 (4) 
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Dus: x = ‐1,  y = 2  en z = ‐1 

Opgave 5 (4 ‐ 4) 

a.  Voor oneindig veel oplossingen geldt: det(matrix) = 0. Het geval 'geen oplossingen' is 
niet aan de orde omdat de nulvector al een oplossing is. Dus: 

1 1 0

! 1 "1

0 2 !

= 1# (! + 2)" !(! " 0)+ 0("1" 0) = "!
2
+ ! + 2 = 0  met oplossingen ! = "1   en  ! = 2  

b.  Bepaal alle oplossingen van het stelsel voor ! = ‐1. 
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 en dus x + y = 0  en 2y ‐ z = 0. Als je stelt  y = t dan zijn dus 
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Opgave 6 (4 ‐ 4) 

a.    
!
a !

!
b = 1!1+ 0 ! 5 + 3 ! "2 = "5   Ook geldt 
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b.  Gebruik de nul in vector  
!
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Opgave 7 (4 ‐ 4) 

a.  Uit de beschrijving van de matrix blijkt dat de y‐as zichzelf blijft. Voor x en z geldt dat er 
een rotatie is (met de y‐as als rotatie‐as) over een hoek !  met cos! =

1

2
3  en sin! = "
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2
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6
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b.  Matrix A is orthogonaal  (de kolomvectoren hebben lengte 1 en staan loodrecht op 
elkaar), dus geldt A‐1=AT 
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