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1. Beschouw een reversibel doorlopen kringproces zoals schematisch aangegeven in het 
onderstaande pV diagram. Het proces vindt plaats met 1 mol 1-atomig ideaal gas waarvoor geldt 

pV=RT en 𝑈 =
3

2
𝑅𝑇. Er zijn twee isobare processen: 1 -> 2 bij druk pH en 3 -> 4 bij druk pL. De 

andere twee processen vinden plaats bij gelijk volume: 2 -> 3 bij VH en 4 -> 1 bij VL. 

 
a.[20] Bewijs dat de reversibele warmte uitgewisseld tussen systeem en omgeving  door het 
proces 1->2->3->4->1 gelijk is aan het oppervlak opgespannen door de punten 1, 2, 3, 4 in het pV 
diagram, namelijk 𝑞𝑟𝑒𝑣 = (𝑝𝐻 − 𝑝𝐿)(𝑉𝐻 − 𝑉𝐿). Hint: dit kan via tenminste 2 routes. Voor één van 
de routes kun je gebruik maken van het gegeven dat 𝐶𝑝 = 𝐶𝑉 + R met Cp en CV de 

warmtecapaciteit per mol bij constante druk en bij constant volume. Foutloos uitwerken van 1 
van de routes levert het maximaal aantal punten op.  
 

b.[15] Gegeven dat de reversibele entropieverandering 𝑑𝑆 =
𝑑𝑞𝑟𝑒𝑣

𝑇
 met dqrev de reversibel 

uitgewisselde warmte. Laat zien dat voor een reversibel proces van toestand 1 naar toestand 2 in 

de figuur hierboven de entropieverandering gegeven is door 𝛥𝑆 = 𝐶𝑝 𝑙𝑛 (
𝑉𝐻

𝑉𝐿
), en voor een 

reversibel proces van toestand 2 naar toestand 3 𝛥𝑆 = 𝐶𝑉 𝑙𝑛 (
𝑝𝐿

𝑝𝐻
).  

 

c.[15] Laat zien dat ∮
𝑑𝑤𝑟𝑒𝑣

𝑝
= 0. Hier is dwrev de reversibele volume arbeid. Bespreek dit resultaat 

in termen van eigenschappen van toestandsgrootheden. 
 
2. Een zuivere component 1 vormt buiten de klassieke aggregatie toestanden gas, vloeistof en 
vast onder bepaalde omstandigheden een vloeibaar kristal, een toestand met zowel vloeistof als 
kristal-achtige eigenschappen. We beschouwen hier het evenwicht tussen de vloeistof fase L en 
de vloeibaar kristallijne fase LC (dat staat voor ‘Liquid Crystalline’). De temperatuur waarbij L in 
evenwicht is met LC, voor de zuivere component 1 en bij een druk van 1 atmosfeer, is T*. Men 
voegt een component toe die oplost in zowel L als LC, en wel in een verhouding gegeven door de 

partitie coëfficiënt 𝐾 =
𝑥2

𝐿𝐶

𝑥2
𝐿 . Hier is x2 de molfractie van de toegevoegde component (component 

2). Het superscript geeft de aggregatie toestand aan waarin component 2 is opgelost. K is in goede 
benadering onafhankelijk van de temperatuur. Neem aan dat component 2 zich ideaal gedraagt 
in zowel L als LC.  



 
a.[10] De concentratie - afhankelijkheid van de chemische potentiaal van 1 in termen van de 
molfractie van 1, x1, bij temperatuur T is gegeven door  𝜇1 =  𝜇1

∗ + 𝑅𝑇𝑙𝑛𝑥1. Hier is µ1
*

 de 
chemische potentiaal van de zuivere component 1. De temperatuur- en druk afhankelijkheid van 
de chemische potentiaal  van 1 is in het algemeen  d𝜇1(𝑇, 𝑝) =  −𝑠1𝑑𝑇 + 𝑣1𝑑𝑝. Hier zijn s1 en v1 
de partieel molaire entropie en het partieel molair volume van 1. Die waarden hangen weer af 
van de aggregatie toestand. Laat zien dat de chemische potentiaal van component 1 in aggregatie 
toestand X geschreven kan worden als 
 
 𝜇1

𝑋 =  𝜇1
∗𝑋 + 𝑅𝑇∗𝑙𝑛𝑥1

𝑋 − 𝑠1
𝑋(𝑇 − 𝑇∗). 

      
b.[20] Laat zien, (en maak gebruik van vraag a ook als je de afleiding niet hebt kunnen geven) dat 
de temperatuur waarbij L en LC in evenwicht zijn, in termen van de totale molfractie van 
component 2 in L en LC, x2

t, met x2
t = x2

L + x2
LC, gegeven is door 

 

 𝑇 = 𝑇∗ +
𝑅𝑇∗2

Δℎ1
𝑥2

𝑡 𝐾−1

𝐾+1
 

 
In deze vergelijking is ∆ℎ1 = ℎ1

𝐿 − ℎ1
𝐿𝐶 met h1

X de partieel molaire enthalpie van component 1 in 
X (met X = L of LC) en is gebruik gemaakt van 𝜇1

𝑋 = ℎ1
𝑋 − 𝑇𝑠1

𝑋. Er is een subtiliteit met betrekking 
tot de definitie van x2

t; die mag je negeren. Verder is gegeven de Taylor ontwikkeling tot in eerste 
orde voor ln(1-x) ≈ -x. 
 
c.[20] Bespreek de waarde van de evenwichtstemperatuur T ten opzichte van de 
evenwichtstemperatuur van de zuivere component 1, T*.  Wat verwacht je voor het teken van 
Δh1? Wanneer is T=T* bij x2

t > 0? Schets  µ1
X als functie van de temperatuur voor X = L en LC, en 

voor de situaties K<1, K>1 en K=1. Laat daarmee geometrisch zien hoe de evenwichtstemperatuur 
verandert ten gevolge van toegevoegd component 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UITWERKINGEN 
 
1.a. Route 1. Wegens ∮ 𝑑𝑈 = 0 = 𝑞 + 𝑤 geldt q= -w. Berekening via de arbeid: Bij 2->3 en bij 4-
>1 wordt geen arbeid verricht want het volume blijft constant en dus geldt 

2 3 4 1 ( ) 0w w p V dV− −= = − = . Bij de andere twee processen blijft de druk constant en dus  

1 2 ( )H H H Lw p dV p V V− = − = − −  en 
3 4 ( )L L L Hw p dV p V V− = − = − − . De totaal verrichte arbeid 

bij het proces is 𝑤 = 𝑤1−>2 + 𝑤3−>4 = (𝑝𝐿 − 𝑝𝐻)(𝑉𝐻 − 𝑉𝐿) = −(𝑝𝐻 − 𝑝𝐿)(𝑉𝐻 − 𝑉𝐿). Omdat q=-
w geldt 𝑞 =  (𝑝𝐻 − 𝑝𝐿)(𝑉𝐻 − 𝑉𝐿) en QED. 
 

Route 2: 𝑞 = 𝑞1→2 + 𝑞2→3 + 𝑞3→4 + 𝑞4→1 met  𝑞1→2 = 𝐶𝑝(𝑇2 − 𝑇1) =
𝐶𝑝𝑝𝐻

𝑅
 (𝑉𝐻 − 𝑉𝐿). 𝑞2→3 =

𝐶𝑉(𝑇3 − 𝑇2) =
𝐶𝑉𝑉𝐻

𝑅
 (𝑝𝐿 − 𝑝𝐻). Hier is gebruik gemaakt van de ideale gaswet. Werk analoog uit 

voor de andere twee deelprocessen. Vervolgens gebruik maken van 𝐶𝑝 = 𝐶𝑉 + R. Dan vallen alle 

termen met de warmtecapaciteiten tegen elkaar weg en de overgebleven termen kunnen worden 
geschreven als  (𝑝𝐻 − 𝑝𝐿)(𝑉𝐻 − 𝑉𝐿). 
 

b. Isobaar: 
rev pdq C dT=  en dus 𝛥𝑆 = ∫ 𝐶𝑝

𝑑𝑇

𝑇

𝑇2

𝑇1
= 𝐶𝑝 𝑙𝑛 (

𝑇2

𝑇1
). Voor een isochoor (gelijk volume) 

proces geldt rev Vdq C dT=  en (zie hierboven) 𝛥𝑆 = 𝐶𝑉 𝑙𝑛 (
𝑇3

𝑇2
). Vervolgens de ideale gaswet 

gebruiken: T1=pHVL/R, T2=pHVH/R, T3=pLVH/R. Invullen in bovenstaande uitdrukkingen voor de 
entropie veranderingen en  QED. 
 
c. Via uitwerken van alle stappen zoals bij a.  Er blijven alleen volumes over en die vallen tegen 

elkaar weg. Formeel:  ∮
𝑑𝑤𝑟𝑒𝑣

𝑝
= ∮

−𝑝𝑑𝑉

𝑝
= − ∮ 𝑑𝑉. En dat wordt voor de hele cyclus –[(V2-V1) + 

(V3-V2) + (V4-V3) + (V1-V4)] = 0.  Het kan ook a priori via het argument dat dwrev = -pdV en dus 
dwrev/p=-dV. Omdat het hier over volume-veranderingen gaat en volume een toestandsgrootheid 
is moet elk kringproces 0 opleveren. Dit is een analogie met de toestandsgrootheid dS=dqrev/T, 
een vergelijkbare combinatie van een geconjugeerde extensieve (qrev) en intensieve (T) variabele. 
 
2a. Zie handout (2021-22) p.38-39 voor de chemische potentiaal van de vloeistof. Deze afleiding 
geldt voor alle gevallen waarbij een component (ideaal) mengt met een andere component. 
 
2b. (1) gelijkstellen van de chemische potentialen 𝜇1

𝐿 = 𝜇1
𝐿𝐶 met 

 
 𝜇1

𝑋 =  𝜇1
∗𝑋 + 𝑅𝑇∗𝑙𝑛𝑥1

𝑋 − 𝑠1
𝑋(𝑇 − 𝑇∗) (X=L, LC). Dan vinden we 

 



 

 
 

c. De entropie van L is naar verwachting hoger dan die van LC want een vloeibaar kristal is minder 
wanordelijk dan een vloeistof. Dus Δh1=TΔs1>0. Derhalve geldt bij x2

t>0 dat  T>T* als K>1, dus 
component 2 heeft een voorkeur voor LC. Als K<1 dus als de tweede component een voorkeur 
heeft voor L, dan zien we dat T<T*. Bij K=1, dus als component 2 zich gelijk verdeelt over L en LC 
hebben we het bijzondere geval dat T=T*. Geometrisch, zie ook handout (2021-22) Fig. 4.2 p. 41 
is de daling van de chemische potentialen gegeven door RT*x2

L en RT*x2
LC. De 

richtingscoëfficiënten van de lijnen het µ1 – T vlak in de figuren hieronder zijn -s1
X en dus de lijnen 

zullen minder stijl lopen voor LC dan voor L. Het snijpunt van de zwarte lijnen is bij T* en de 
snijpunten van de rode lijnen zijn de nieuwe evenwichtstemperaturen ten gevolge van het 
toevoegen van de tweede component. Het eerste plaatje hieronder is de situatie voor K<1, het 
tweede voor K>1 en het laatste voor K=1.  De blauwe lijnstukken in de onderste figuur zijn precies 
even lang bij K=1, en dat leidt geometrisch tot hetzelfde snijpunt op de T-as als bij de zuivere 
component. 
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