Deeltoets Fysische Chemie 2, 17 dec 2021, onderdeel thermodynamica

1. Beschouw een reversibel doorlopen kringproces zoals schematisch aangegeven in het
onderstaande pV diagram. Het proces vindt plaats met 1 mol 1-atomig ideaal gas waarvoor geldt

pV=RT en U = ZRT. Er zijn twee isobare processen: 1 -> 2 bij druk pn en 3 -> 4 bij druk p.. De
andere twee processen vinden plaats bij gelijk volume: 2 -> 3 bij V4 en 4 -> 1 bij VL.
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a.[20] Bewijs dat de reversibele warmte uitgewisseld tussen systeem en omgeving door het
proces 1->2->3->4->1 gelijk is aan het oppervlak opgespannen door de punten 1, 2, 3, 4 in het pV
diagram, namelijk @0, = (py — 1) (Vy — V1). Hint: dit kan via tenminste 2 routes. Voor één van
de routes kun je gebruik maken van het gegeven dat (, =Cy+R met G, en Cv de

warmtecapaciteit per mol bij constante druk en bij constant volume. Foutloos uitwerken van 1
van de routes levert het maximaal aantal punten op.
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b.[15] Gegeven dat de reversibele entropieverandering dS =dT met dgrev de reversibel

uitgewisselde warmte. Laat zien dat voor een reversibel proces van toestand 1 naar toestand 2 in

de figuur hierboven de entropieverandering gegeven is door 4S = C, In (‘;—H), en voor een
L

reversibel proces van toestand 2 naar toestand 3 AS = Cy In (;’—L).
H
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c.[15] Laat zien dat gﬁ% = 0. Hier is dwrey de reversibele volume arbeid. Bespreek dit resultaat

in termen van eigenschappen van toestandsgrootheden.

2. Een zuivere component 1 vormt buiten de klassieke aggregatie toestanden gas, vloeistof en
vast onder bepaalde omstandigheden een vloeibaar kristal, een toestand met zowel vloeistof als
kristal-achtige eigenschappen. We beschouwen hier het evenwicht tussen de vloeistof fase L en
de vloeibaar kristallijne fase LC (dat staat voor ‘Liquid Crystalline’). De temperatuur waarbij L in
evenwicht is met LC, voor de zuivere component 1 en bij een druk van 1 atmosfeer, is T". Men
voegt een component toe die oplost in zowel L als LC, en wel in een verhouding gegeven door de

LC
partitie coéfficient K = % Hier is x, de molfractie van de toegevoegde component (component
2

2). Het superscript geeft de aggregatie toestand aan waarin component 2 is opgelost. K is in goede
benadering onafhankelijk van de temperatuur. Neem aan dat component 2 zich ideaal gedraagt
in zowel L als LC.



a.[10] De concentratie - afhankelijkheid van de chemische potentiaal van 1 in termen van de
molfractie van 1, x1, bij temperatuur T is gegeven door p; = uj + RTInx,. Hier is pi" de
chemische potentiaal van de zuivere component 1. De temperatuur- en druk afhankelijkheid van
de chemische potentiaal van 1isin het algemeen du,(T,p) = —s:dT + v,dp. Hier zijn s; en v;
de partieel molaire entropie en het partieel molair volume van 1. Die waarden hangen weer af
van de aggregatie toestand. Laat zien dat de chemische potentiaal van component 1 in aggregatie
toestand X geschreven kan worden als

uf = WX + RT*Inxf — sf¥(T —T*).

b.[20] Laat zien, (en maak gebruik van vraag a ook als je de afleiding niet hebt kunnen geven) dat
de temperatuur waarbij L en LC in evenwicht zijn, in termen van de totale molfractie van
component 2 in L en LC, x2%, met x2' = x2' + x2'C, gegeven is door
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In deze vergelijking is Ah; = ht — hi€ met hiX de partieel molaire enthalpie van component 1 in
X (met X = L of LC) en is gebruik gemaakt van uf = h{ — Ts{. Er is een subtiliteit met betrekking
tot de definitie van x2'; die mag je negeren. Verder is gegeven de Taylor ontwikkeling tot in eerste
orde voor In(1-x) = -x.

c.[20] Bespreek de waarde van de evenwichtstemperatuur T ten opzichte van de
evenwichtstemperatuur van de zuivere component 1, T". Wat verwacht je voor het teken van
Ah1? Wanneer is T=T" bij xt> 0? Schets ;X als functie van de temperatuur voor X = L en LC, en
voor de situaties K<1, K>1 en K=1. Laat daarmee geometrisch zien hoe de evenwichtstemperatuur
verandert ten gevolge van toegevoegd component 2.



UITWERKINGEN

1.a. Route 1. Wegens § dU = 0 = q + w geldt q= -w. Berekening via de arbeid: Bij 2->3 en bij 4-
>1 wordt geen arbeid verricht want het volume blijft constant en dus geldt

W, =W, >l:—'[ p(V)dV =0. Bij de andere twee processen blijft de druk constant en dus

w, o, = pHIdV =—p,V,-V)enw, ,= pL_[dV =—p,_(V, -V, ). De totaal verrichte arbeid

bij het procesisw = wy_s; + Ws_s4 = (0L — Pu) (Ve — V) = —(ow — L) (Vi — V,,). Omdat g=-
wgeldtq = (py —p)(Vy — V) en QED.

CppH

Vy = V0). 423 =

(pL — py)- Hier is gebruik gemaakt van de ideale gaswet. Werk analoog uit

Route 2: ¢ = 12+ Q23 + G354 + quy Mmet g1, = G (T, —T1) =
Cy(T; = Tp) = 22
voor de andere twee deelprocessen. Vervolgens gebruik maken van C,, = Cy + R. Dan vallen alle

termen met de warmtecapaciteiten tegen elkaar weg en de overgebleven termen kunnen worden
geschreven als (py —p) (Vg —V1).

b. Isobaar: dq,, =C,dT en dus 4S = f;;z =Cpyln ( ) Voor een isochoor (gelijk volume)
1

proces geldt dq,, =C,dT en (zie hierboven) AS = Cyln (T—S) Vervolgens de ideale gaswet
2

gebruiken: T1=puVi/R, T2=puVu/R, T3=pVu/R. Invullen in bovenstaande uitdrukkingen voor de
entropie veranderingen en QED.

c. Via uitwerken van alle stappen zoals bij a. Er blijven alleen volumes over en die vallen tegen
d -pdv
elkaar weg. Formeel: ¢ M;:e” =¢ z; = — ¢ dV. En dat wordt voor de hele cyclus —[(V2-V1) +

(V3-V2) + (Va-V3) + (V1-V4)] = 0. Het kan ook a priori via het argument dat dwe, = -pdV en dus
dwrev/p=-dV. Omdat het hier over volume-veranderingen gaat en volume een toestandsgrootheid
is moet elk kringproces 0 opleveren. Dit is een analogie met de toestandsgrootheid dS=dqre//T,
een vergelijkbare combinatie van een geconjugeerde extensieve (grev) en intensieve (T) variabele.

2a. Zie handout (2021-22) p.38-39 voor de chemische potentiaal van de vloeistof. Deze afleiding
geldt voor alle gevallen waarbij een component (ideaal) mengt met een andere component.

2b. (1) gelijkstellen van de chemische potentialen ut = ,ufc met

uf = WX + RT*Inx{ — s{(T — T*) (X=L, LC). Dan vinden we
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c. De entropie van L is naar verwachting hoger dan die van LC want een vloeibaar kristal is minder
wanordelijk dan een vloeistof. Dus Ah;=TAs;>0. Derhalve geldt bij x,®>0 dat T>T" als K>1, dus
component 2 heeft een voorkeur voor LC. Als K<1 dus als de tweede component een voorkeur
heeft voor L, dan zien we dat T<T". Bij K=1, dus als component 2 zich gelijk verdeelt over L en LC
hebben we het bijzondere geval dat T=T". Geometrisch, zie ook handout (2021-22) Fig. 4.2 p. 41
is de daling van de chemische potentialen gegeven door RT'x* en RT'x'C. De
richtingscoéfficiénten van de lijnen het u1 — T vlak in de figuren hieronder zijn -s1* en dus de lijnen
zullen minder stijl lopen voor LC dan voor L. Het snijpunt van de zwarte lijnen is bij T" en de
snijpunten van de rode lijnen zijn de nieuwe evenwichtstemperaturen ten gevolge van het
toevoegen van de tweede component. Het eerste plaatje hieronder is de situatie voor K<1, het
tweede voor K>1 en het laatste voor K=1. De blauwe lijnstukken in de onderste figuur zijn precies
even lang bij K=1, en dat leidt geometrisch tot hetzelfde snijpunt op de T-as als bij de zuivere
component.
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