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a. [10] Leg uit wat een canonieke verdeling is en waarom dat ook wel een Boltzmann 
verdeling wordt genoemd. 
 
b. [15] Een heteronucleair twee-atomig molecuul heeft rotatie-energie niveaus 

gegeven door 
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is het traagheidsmoment van het molecuul en h de constante van Planck. De 
bijbehorende ontaardingen zijn gegeven door 2 1Jg J= + .  

Laat zien dat bij zeer lage temperatuur de moleculaire rotatieverdelingsfunctie 

gegeven is door 𝑞𝑅 = 1 + 3𝑒−2𝜃𝑅/𝑇. Hier is de rotatie-temperatuur gegeven door 
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=  met k de constante van Boltzmann. 

 
c. [30] Geef een uitdrukking voor de rotatiebijdrage aan de entropie van een twee-
atomig heteronucleair  molecuul bij zeer lage temperatuur (als in b.) in termen van ΘR en 
T. Gaat de entropie naar 0 in de limiet dat T->0? Laat zien (een redenering zonder 
formule(s) kan ook punten opleveren). 

 
d. [25] Laat zien uit de gegevens in b. dat voor ΘR << T de moleculaire 
rotatieverdelingsfunctie gegeven is door 𝑞𝑅 = 𝑇/Θ𝑅. Geef vervolgens een 
uitdrukking voor de fractie moleculen in aangeslagen rotatie-toestanden (J>0) in 
termen van ΘR en T, wederom voor het geval ΘR << T.  
 
e. [20] Beschouw 2 verschillende ideale gassen, ieder met N moleculen in  
compartimenten met gelijk volume V die van elkaar zijn gescheiden door een wand. 
Men verwijdert de wand, zodat de gassen (die niet met elkaar reageren) kunnen 
mengen. Bereken het verschil in entropie S tussen de situaties na en voor menging. 
Verwaarloos hierbij het volume ingenomen door de wand. Gegeven de 
toestandssom van N moleculen van een ideaal gas in een volume V en met interne 

vrijheidsgraden (subscript ‘int’) 𝑄 =
𝑉𝑁

Λ3𝑁𝑁!
𝑞𝑖𝑛𝑡
𝑁 . Hier is Λ de thermische de Broglie 

golflengte (die alleen van de massa en temperatuur afhangt). Zullen de gassen 
spontaan mengen?   
 
 

Gegevens bij statistische thermodynamica 

Standaard integralen   
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Geometrische reeks 
0

1

1

n

n

x
x



=

=
−

  ( 1x  ) 

Taylor ontwikkeling exponent 1xe x= +   (x<<1) 
 



Stirling approximation: ln ! lnN N N N −   (N>>1)  
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UITWERKING  

a. Voor een canonieke verdeling geldt dat de waarschijnlijkheid om een systeem in 

een toestand j te vinden gegeven is door 
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de normalisatie – factor van de verdeling. De Canonieke verdeling wordt ook de 
Boltzmann verdeling genoemd omdat het in feite dezelfde verdeling is: de kans om 
een deeltje aan te treffen in een toestand j is exponentieel evenredig met de energie 
die hoort bij die toestand.  

 

b. Bij zeer lage temperaturen, ofwel R T  ,  is de leidende temperatuurs – 

afhankelijke term in de rotatieverdelingsfunctie degene die overeenkomt met J=1, 

oftewel 
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steeds kleinere bijdragen. Een ander (even plausibel) argument is dat bij lage 
temperatuur slechts de laagste energienivo’s bezet zijn en bijdragen aan de 
rotatieverdelingsfunctie (dit argument is analoog aan het meenemen van alleen de 
grondtoestand voor de elektronen). 
 
 
c. De rotatiebijdrage aan de entropie voor een molecuul is, gebruikmakend van het 

formuleblad, 
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Substitutie van de rotatieverdelingsfunctie voor zeer lage temperatuur, (vraag b)
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Het is eenvoudig te zien dat de eerste term naar nul gaat als T -> 0. Ook de tweede 

term gaat naar nul, want de exponentiële term 2 /R T
e

− gaat sneller naar nul met T 
dan T zelf, en dus 
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Een plausibel formule – loos argument is dat als T->0 er slechts één enkele 
rotatietoestand bestaat, nl de grondtoestand met ontaardingsgraad 1. De rotatie-
entropie is evenredig met het logaritme van het aantal rotatie-toestanden en dus 0.  
 

d. 
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=  (voor de afleiding daarvan zie handout – maak gebruik van de rechter 

gegeven standaardintegraal op het formuleblad).  
 

Fractie moleculen in aangeslagen toestanden
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e. De Helmholtz vrije energie is A=U-TS zodat S=U/T – A/T = U/T + klnQ. De 
temperatuur, en het totale aantal deeltjes blijft gelijk dus voor de ideale gassen is 
U/T = constant. De interne vrijheidgraden (rotatie, vibratie, elektronen) zullen door 
mengen niet veranderen, en kunnen in principe in de constante worden gestopt. 
Hier doen we dat niet (maar het mag dus wel!). Voor mengen geldt, met N1 = N2 = N 
en V1 = V2  = V, 
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terwijl na mengen geldt V1=V2= 2V, 
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Het verschil in entropie is 𝛥𝑆 = 𝑘 𝑙𝑛
𝑄𝑛𝑎

𝑄𝑣𝑜𝑜𝑟
= 2𝑁𝑘 𝑙𝑛

2𝑉

𝑉
= 2𝑁𝑘 𝑙𝑛 2 J/ K. 

Mengen zal spontaan plaatsvinden want het verschil in entropie is groter dan nul. 
Het verschil in interne energie is gelijk aan 0 en dus is het verschil in Helmholz vrije 
energie kleiner dan 0. 

 


