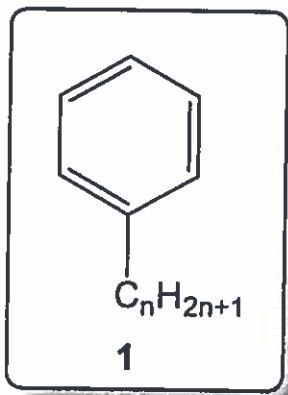


Organic Chemistry 2

Examination January 13 2014, 9.00-12.00 h

This exam consists of 6 questions.

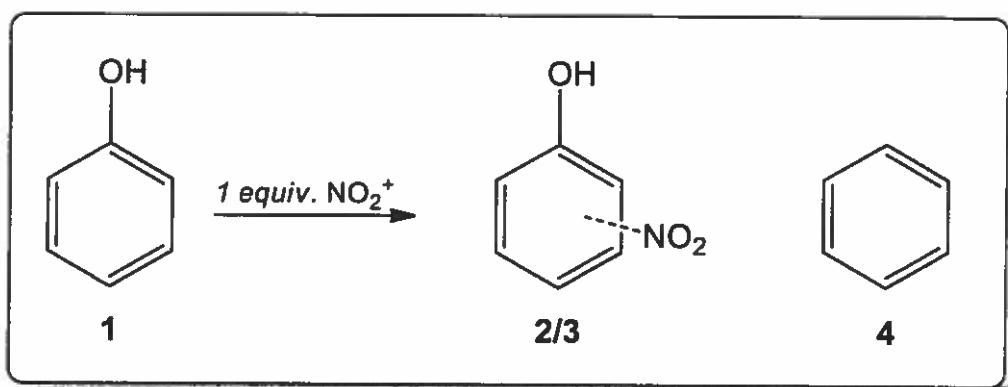
- Read the questions carefully!
- For each question the maximum score is given (total 60 points)
- Draw clear structures and write in a clear manner
- On each piece of paper write your name and student number


Enjoy and good luck!

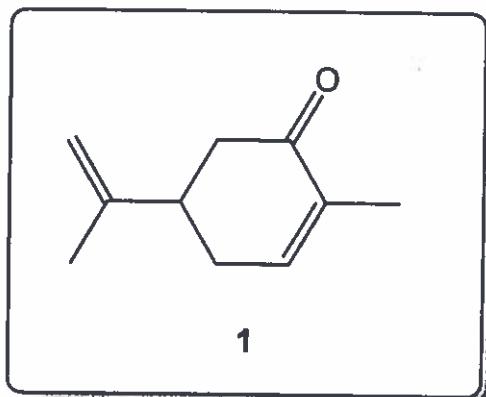
Question 1 (8 points)

Treatment of *benzene* with an *alkyl* chloride ($R\text{-Cl}$) in the presence of AlCl_3 (*Friedel-Crafts* alkylation) gives access to alkylated benzene derivatives.

Despite its utility, *Friedel-Crafts* alkylation has several limitations especially for the synthesis of 'simple' *n*-alkylated benzenes, *viz.* benzene functionalized with one extended (*anti-periplanar*) *n*-alkyl chain (see 1).

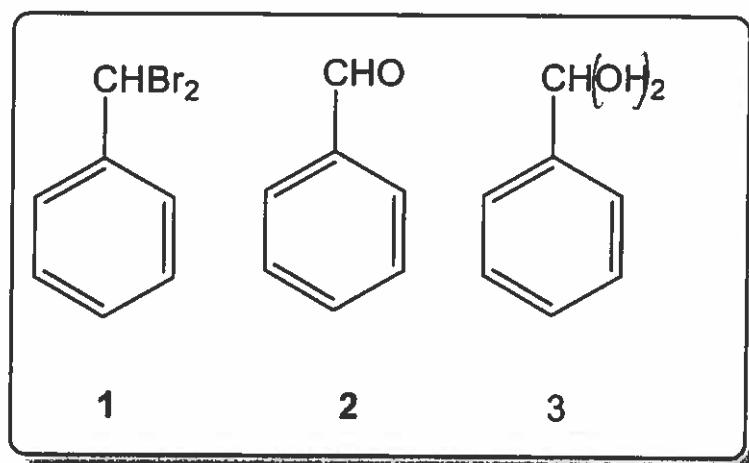

- a. Explain in detail (*Hint:* take into account the complete reaction mechanism for *Friedel-Crafts* alkylation using, for example, *n*-butyl chloride). (4 points)
- b. Propose another synthetic approach to access *pure* *n*-alkylated benzenes. (4 points)

Question 2 (12 points)

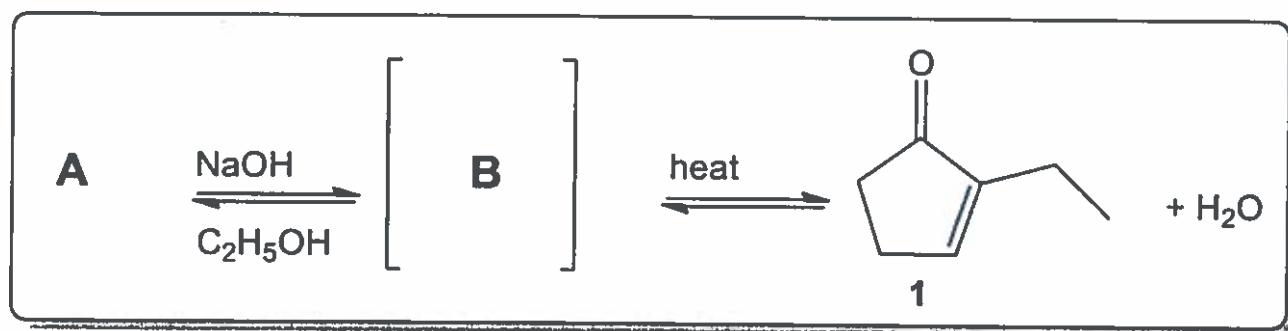

Treatment of *phenol* (**1**) with *1 equiv.* of the *electrophile* NO_2^+ generated *in situ* by reaction of *1 equiv.* of *conc.* nitric acid (HNO_3) and *1 equiv.* of *conc.* sulfuric acid (H_2SO_4) gives only two (**2** and **3**) out of three possible products. The products **2** and **3** are formed in a *1:1* molar ratio.

- a. Provide the complete reaction mechanism for the *in situ* formation of the electrophile NO_2^+ by reaction of *1 equiv.* of *conc.* nitric acid (HNO_3) and *1 equiv.* of *conc.* sulfuric acid (H_2SO_4). **(2 points)**
- b. Provide structures for the two products **2** and **3** that are formed upon treatment of *phenol* (**1**) with *1 equiv.* of the *electrophile* NO_2^+ . **(4 points)**
- c. Explain in detail (complete reaction mechanism) why only two (**2** and **3**) out of three possible products are formed. **(4 points)**
- d. *Phenol* (**1**) is *ca.* 1000 times more reactive than *benzene* (**4**) under the applied reaction conditions. Explain in detail. **(2 points)**

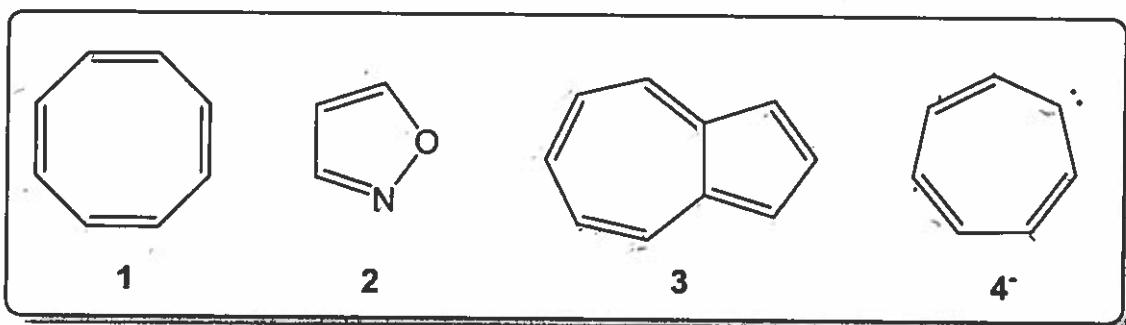
Question 3. (10 points)


Carvone (1) is the major constituent of spearmint oil. What product(s) would you expect to find from reaction of *carvone (1)* with the following reagents?:

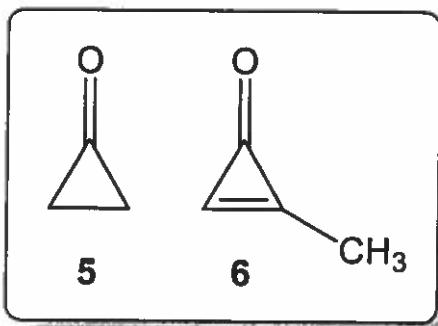
- a. LiAlH_4 , then H_3O^+ (2 points)
- b. $\text{C}_6\text{H}_5\text{MgBr}$, then H_3O^+ (2 points)
- c. CH_3NH_2 (2 points)
- d. $(\text{C}_6\text{H}_5)_3\text{P}^+ - \text{CHCH}_3$ (2 points)
- e. H_2 , Pd/C (2 points)


Question 4 (8 points)

The S_N2 reaction of *dibromomethylbenzene* ($C_6H_5CHBr_2$ (**1**)) with a solution containing at least 2 equiv. $Na^+ \cdot OH$ yields *benzaldehyde* (**2**) instead of *dihydroxymethylbenzene* ($C_6H_5CH(OH)_2$ (**3**)). Explain in detail (complete reaction mechanism).


Question 5 (8 points)

The *cyclopentenone* derivative **1** can be synthesized by an *intramolecular aldol condensation reaction*. What *reactant A* was used for the preparation of **1**? Also give the structure of the *primary condensation product B* obtained after treatment of **A** with NaOH in C₂H₅OH. What happens during heat treatment of **B**? Explain in detail (complete reaction mechanism).



Question 6 (14 points)

a. Explain in detail whether the conjugated compounds **1**, **2**, **3** and **4⁻** are either aromatic or anti-aromatic. (Hint: apply the Hückel rule). **(8 points)**

b. *Cyclopropanone* (**5**) is highly reactive because of its large amount of angle strain. In contrast, *methylcyclopropenone* (**6**), although more strained than *cyclopropanone* (**5**), is stable. Compound **6** can even be distilled. Explain in detail. (Hint: take the polarity of the carbonyl (C=O) group into account). **(6 points)**

