

Name and student number: _____

Good luck!

- Write your name on each answer sheet.
- Answer Q1 and Q2 on separate sheets of paper.
- Please pay attention to your hand-writing. If we cannot read your answers, we cannot award points.
- In your answers, do not immediately start with equations. Also draw conclusions from the calculations you have done.
- Preferably answer in English.
- Please note that you can earn a maximum of 35 points.
- Not each question is worth the same number of points.
- The following relations might be helpful:

$$\begin{aligned}\cos(2a) &= 2 \cos^2 a - 1 \\ \cos(a + b) + \cos(a - b) &= 2 \cos(a) \cos(b) \\ \cos(a + b) &= \cos(a) \cos(b) - \sin(a) \sin(b) \\ \cos(a - b) &= \cos(a) \cos(b) + \sin(a) \sin(b) \\ e^{ik} + e^{-ik} &= 2 \cos(k) \\ \sin(x) &\approx x \text{ (for small } x\text{)}\end{aligned}$$

Question 1: **Geometric structure of surfaces**..... 11 points

- (a) (3 points) Copper has an FCC crystal structure. The surface energy of the Cu(111) surface is 0.67 eV/(surface atom). Compute the surface energy of the Cu(100) **AND** Cu(110) surfaces.
- (b) (2 points) Arrange these copper surfaces in the order of ascending work function. Explain.
- (c) (4 points) Determine the equilibrium shape of a Cu crystal using the {111}, {110} and {100} planes. Use $\gamma_{100} = 1$ eV and $\gamma_{110} = 2$ eV. **IMPORTANT:** These values do *not* correspond to the answers to question 1a. It is not essential that your drawings are exactly to scale.
- (d) (2 points) Name two surface preparation techniques that can be used to prepare this atomically flat and clean surface.

Question 2: **Tight Binding calculations** 24 points

Consider the crystal shown in Fig. 1. The black circles indicate the positions of the atoms. In this question, you will perform a tight-binding calculation of this structure. Each atom contributes one electron and one *s*-type orbital. Only interactions with nearest neighbors have to be taken into account.

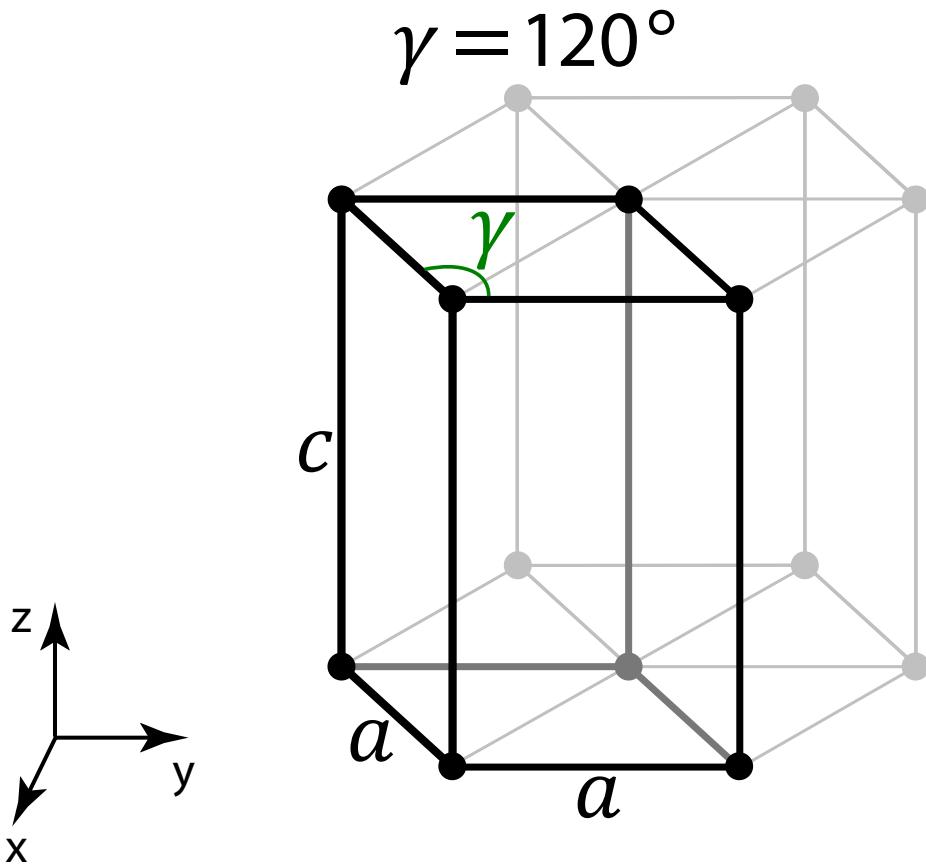


Figure 1: Hexagonal lattice. Note the orientation of the spatial directions x , y and z .

- (3 points) Determine the primitive unit cell vectors using the directions indicated in Fig. 1. Set $c = a$.
- (4 points) Based on your previous answer, determine the primitive unit cell vectors of the reciprocal lattice.
- (9 points) Show that the dispersion relation of this material can be written as

$$E(\mathbf{k}) = \epsilon + 2t \cos(k_y a) + 4t \cos(k_y a/2) \cos(k_x \sqrt{3}a/2) + 2t \cos(k_z a) \quad (1)$$

- (3 points) A large force is applied along the z -axis that pulls the atomic planes apart. Does this change the band structure? Explain.

(e) (2 points) Do you expect this material to be a metal, semi-conductor, or insulator? Explain.

(f) (3 points) Assume that you want to make your calculation more accurate by including a second *s*-type orbital with a significantly higher on-site energy for each atom. Describe how this will change the calculation and the results (is it still a metal or not?) You do not need to do the calculation.