
Problem 1. 
 
(Question 1A) 
Using the trigonometric relations given on the previous page prove that  

1cos cos cos( ) cos( )
2

α β α β α β⎡ ⎤⎣ ⎦= + + − . 

 
Solution: 
One can prove this using different ways. For me the easiest way is to use 
cos( ) cos cos sin sinα β α β α β± = m . Then  
cos( ) cos( ) cos cos sin sin cos cos sin sin 2cos cos .α β α β α β α β α β α β α β+ + − = − + + =  Or,  

1cos cos cos( ) cos( )
2

α β α β α β⎡ ⎤⎣ ⎦= + + − .  

 
(Question 1B) 
A standing wave is written using real functions as  

( )1 0( , ) cos )cos( / 2A x t A t kxω π= −  
Calculate the position of nodes in this standing wave. What is the distance between two 
neighbouring nodes?  
 
Solution: 
Nodes are @ cos( / 2) 0kx π− = , i.e. / 2 / 2kx nπ π π− = + , where n is any integer. Thus,  

( ) /x n kπ π= + . Since n is any integer, you can also write /x n kπ= .  
Taking into account 2 /k π λ= , you can also write the answer as / 2x nλ= . 
The distance between nodes is / 2λ . 
 
(Question 1C) 
Now, to the standing wave 1( , )A x t  from Question 1B, we add a travelling wave  

( )2 0
1
2

( , ) cos / 2A x t A t kxω π= + + ,  

Show that the result of their interference 1 2( , ) ( , )A x t A x t+  is another travelling wave.  
In what direction this wave propagates? What is its phase velocity? 
 
Solution: 
Using the formula from Question 1A, you can realise that A1(x,t) can be written as 

( )1 0 0 0(1 / 2) cos( / 2) (1/ 2) cos( / 2)( , ) cos )cos( / 2 t kx t kxA x t A t kx A Aω π ω πω π = + − + − += −  a sum of two 
travelling waves. The first term is a wave travelling in the negative x direction, so as the A2 
wave. Using the fact that cos( ) cos( )α π α+ = − , you can see that 
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So, the first term in the A1 wave and the A2 wave interfere destructively. The only remaining 
part is the second term in the A1 wave: 1 2 0(1 / 2) cos( / 2)( , ) ( , ) t kxA x t A x t A ω π− ++ = . This is a wave 
travelling in the positive x direction.  
 
Problem 2. 
(Question 2A) 
Write down the formula for the lowest frequency ω  (main tone) of a string with length L and 
the phase velocity of the string wave v. 
Solution: 



Using / (2 )/v kω ωλ π= = and the condition for the main tone / 2L λ= , one can easily get 
/v Lω π= . 

 
(Question 2B) 

A violin (=viool in Dutch) is tuned by turning the pegs (see the 
picture on the left).  
 
Is it the length of the string L or the phase velocity v of the waves 
propagating along the string, which change during tuning?  
 
On the other hand, while 
playing, the musician 
presses the string against 
the deck at different 
positions to produce 
different notes (see the 
photo on the right).  

 
Explain why the tone depends on where the string is 
pressed.  
 
 
 
Solution: 
When a violin is tuned, one hardly changes the length of the string. And one certainly does not 
change the length of the part which can vibrate. What is really tuned is the tension (spanning) 
of the string. This changes the velocity v of the waves travelling along the string.  
When a musician plays the violin, she/he fixes the string at different positions, thus reducing 
the length of the part of the string L, which can vibrate. This increases the frequency so that 
one can one make different notes.  
 
(Question 2C) 
In an orchestra one uses a number of stringed instruments of different size.  
 

 
 



Why one needs such a diversity of instruments in one orchestra? Why the body of a double 
bass (=contrabas, the instrument on the very right in the photo with an arrow pointing to it) is 
so much larger than that of a violin (the dash arrow in the photo).  
 
Solution:  
This was a rather open question, which allowed for some freedom in your answers.  
Of course, all students knew that the double bass is needed to produce very low notes, which 
you cannot get with a violin.  
It is not only the question of how long your strings are. Also, the strings of a double bass are 
much thicker. Their relatively large mass (per unit length) make the waves slow. Smaller wave 
velocity v also make the frequency /v Lω π=  lower. 
The body of the instrument also plays a role. They resonate in a certain range of frequencies to 
enhance the sound and give a unique character to the sound of the notes.  
 
Problem 3. 
 
(Question 3A) 
An interference pattern is created by two plane waves 1

1 0( , ) i t i k rA r t A e ω + ⋅=
uur rr

 and 2
2 0( , ) i t i k rA r t A e ω + ⋅=

uur rr
. 

The wavevectors of these wave have Cartesian components 1 ( , ,0)x yk k k=
uur

 and 2 ( , ,0)x yk k k= −
uur

. 

Calculate the intensity distribution 
2

1 2( ) ( , ) ( , )I r A r t A r t= +
r r r

 in this interference pattern.  
 
Solution: 
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r r r

ur r uur r  

By substituting 1 ( , ,0)x yk k k=
uur

 and 2 ( , ,0)x yk k k= −
uur

, one can find that the intensity is only a 
function of y: 

( )2
0( ) ( ) 2 1 cos(2 )yI r I y A k y= = +

r
. 

 
 
(Question 3B) 
An interference pattern is created by two plane waves 1 1

1 0( , ) i t i k rA r t A e ω + ⋅=
uur rr

 and 2 2
2 0( , ) i t i k rA r t A e ω + ⋅=

uur rr
, 

where 1 2ω ω≠ . Will these two waves interfere? Calculate the time-averaged intensity 

distribution 
2

1 2( ) ( , ) ( , )
t

I r A r t A r t= +
r r r

, where the angular brackets ...
t
 denote averaging over 

time interval much larger than 1 22 /π ω ω− .  
Hint: The average value of cosine function is 0 ( cos 0

χ
χ = ) if averaged over interval much 

larger than the period. 
 
Solution: 
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So, the waves will interfere (the second term in the result above). However, if 1 2ω ω≠ , this 
interference term will disappear after time average of the intensity:  

2
0( ) ( , ) 2

t
I r I r t A= =

r r
. 



Problem 4.  
 
Two identical point scatters are illuminated by a plane wave with wavelength λ travelling in 
the positive x direction. The scatters are placed at r1 = (x1,y1,z1) = (-a,0,0) and r2 = (x2,y2,z2) = 
(a,0,0). A detector is placed at distance L far from the scatters (L >> 2a) such that the direction 
to the detector makes an angle θ  with the y axis.  
 

 
 
(Question 4A) 
Show that the amplitude of the wave at the detector can be written as 

( cos ) ( cos )
0 0

i t ik L a a i t ik L a ab bA A e A e
L L

ω θ ω θ− + − − − += + ,  

where A0 is the amplitude of the incident wave and b is the scattering length. 
Hint: Prove first that for L >> 2a one can approximate the distances from the scatters to the 
detector as L1 ≈ L + a sinθ  and  L2 ≈ L - a sinθ . 
 
Solution: 
I made a mistake in the formulation of this question. I made a typo in the Hint that I gave you. 
It should of course be: 
“... as L1 ≈ L + a cosθ  and  L2 ≈ L - a cosθ .”  
In checking your solutions, I have always interpreted your results in the best possible for 
you way.  
 
At the detector position one has to sum the spherical waves scattered by both scatters: 

1 2( )
0 0

1 2

i t ikL i t ikLika ik ab bA A e e A e e
L L

ω ω− −− − −= + ,  

where the ( )ik ae− −  and ikae−  phase factors appear since the incident wave arrives earlier to the 
scatter at –a than to the one at a. 
 
To calculate L1 and L2, one can use the cosine theorem: 

( )2 2 2
1 2 cosL L a aL θ= + +  

x 

y 
plane wave 

detector 

θ 

L 



( )2 2 2
2 2 cosL L a aL θ= + − .  

By neglecting the a2 term and expanding the square root into the Taylor series, one get the 
desired relations: L1 ≈ L + a cosθ  and  L2 ≈ L - a cosθ . 
The same one can do by simply saying that the directions to the detector from the scatter 1 and 
2 are practically parallel. The desired relations can be easily obtained using the figure:  
 

 
 
 Next step in the derivation is simply replacing (1/L1) and (1/L2) by (1/L) since this is a slowly-
varying function. However, one has to take into account the terms linear in a in the fast-
varying complex exponent. We arrive then at the desired relation: 

( cos ) ( cos )
0 0

i t ik L a a i t ik L a ab bA A e A e
L L

ω θ ω θ− + − − − += +  

  
(Question 4B) 
Explain the 1/L dependence in the amplitudes of the waves in Question 4A. 
 
Solution: 
The 1/L dependence is related to the energy conservation law. The power of a spherical wave is 
spreading over a surface, which grows as L2. This is compensated by the 1/L2 dependence in 
the intensity (power per unit area) I ∝ |A|2.  
 
(Question 4C) 
Calculate the intensity of the wave (see Question 4A) at the detector. At what value of θ  one 
observes the first minimum of the intensity if 

(i) a = 50 nm and λ = 0.1 nm (x-ray) 
(ii) a = 50 nm and λ = 500 nm (visible light) 

 
Solution: 

{ } [ ]{ }
2 2

2 2 22 ( cos ) 2 ( cos )
0 02 21 1 2 1 cos 2 ( cos )i k a a i k a ab b

I A A e e A k a a
L L

θ θ θ− − −= = + + + = + −  

The minima are at [ ]cos 2 ( cos ) 1k a a θ− = − . The first minimum is therefore at 
2 ( cos )k a a θ π− = . Therefore, cos / 4a a θ λ− =  or cos 1 / (4 )aθ λ= − . 
 

(i) By substituting the numbers, one gets cos 1 0.1/ 200 0.9995θ = − =  or 
1.8θ = o   

x 

y L 

θ 



(ii) Here one finds that cos 1 500 / 200 1.5θ = − = − . One cannot fulfill this 
condition and, therefore, the first minimum (when the waves scattered by the 
two objects cancel each other) cannot be reached.  


