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(Question 1A) 

These waves possess no nodes, i.e., x values at which the amplitude A is zero for all t. 

They are, instead, travelling waves.  

For the first wave 
1 0 cos(( , ) 2 )A x t A t kx  : At any subsequent time instance t t   

the wave profile remains the same but is shifted in space: 

0 0cos cos( )( ) ( )A t t k x x A t kx           for all x and t. This condition is 

fulfilled for 0k x t    . Therefore, the phase velocity is v x
t k

 


. This 

wave travels in the positive x-direction. 

Similarly, for the second wave 
2 0 cos(( , ) 2 )A x t A t kx  : 

0 0cos cos( )( ) ( )A t t k x x A t kx           must hold for all x and t. This 

condition is fulfilled for 0k x t     . Therefore, the phase velocity is 

v x
t k

 
 . This wave travels in the negative x-direction. 

 

(Question 1B) 

Using trigonometric relations provided, one can easily derive  
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This is a standing wave since there are x values where the amplitude is equal to 0 for all 

t. The position of these nodes is governed by the relation cos( ) 0kx  , which is 

satisfied at / 2kx n   . Thus, the positions of the nodes is 

( / 2 ) / / 4 / 2x n k n       , where 0, 1, 2, ...n    

 
(Question 2A) 

 

 

 

 

 

 

The incident plane wave is written as 0
i t ikxeA  

 (the first term). The scattered wave can be 

written as 0
i t ikrb

r
eA  

. For the points on the x axis r x , i.e., r x  for x > 0 and r x   for 

x < 0. Thus, the sum of the incident wave and the wave scattered by the second atom can be 

written as  

0 0( , ) i t ikx i t ikxb

x
A x t e eA A     for x > 0 and 

0 0( , ) i t ikx i t ikxb

x
A x t e eA A     for x < 0. 
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(Question 2B) 

After a simple calculation, one gets (assuming b is real) 
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(Question 3A) 

At the detector position one has to sum the spherical waves scattered by both scatters: 

1 2

0 0

1 2

i t ikL i t ikLb b
A A e A e

L L

  
  .  

To calculate L1 and L2, one can use the cosine theorem: 
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.  

By neglecting the a2 term and expanding the square root into the Taylor series, one get the 

desired relations: L1  L + a sinand L2  L - a sin
The same one can do by simply saying that the directions to the detector from the scatter 1 and 

2 are practically parallel. The desired relations can be easily obtained using the figure:  

 

 
 Next step in the derivation is simply replacing (1/L1) and (1/L2) by (1/L) since this is a slowly-

varying function. However, one has to take into account the terms linear in a in the fast-

varying complex exponent. We arrive then at the desired relation: 
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(Question 3B) 

    
2 2
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One get a minimum when  cos 2 sin 1ka    . The first minimum is at 2 sinka    or 

sin (1/ 4)(2 / )(1/ ) / 4k a a    . With the numbers given sin 0.0005   or 

0.0005 rad 0.029   . 

 

(Question 4A) 

One needs to explain two points here: 

(a) The amplitude of the waves reduces with the distance since the wave is spreading over 

an increasing area. The total power P of the wave can be calculated as its intensity at a 

distance r, proportional to 
2

( , )A r t , times the perimeter 2 r  of the circle. To 

ensure the energy conservation law the total power P should be independent of the 

choice of r. Thus, the amplitude must reduce as 
1

r
.  

(b) A circular wave propagates in all direction along the surface. Therefore, its phase must 

be the function of the distance travelled but not of the direction. Moreover, the phase 

t kr  propagates outwards: with increasing t  one has to increase r  to stay at the 

same phase in the wave. The complex exponent 
i t ikre  

 perfectly satisfies this 

condition.  

 

(Question 4B) 

Similar to 3A,  
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By neglecting the a2 terms and using the Taylor expansion 

1 1 / 2x x    for small x, one gets 

1

2

sin

sin

L L a

L L a





 

 
 

which can be used in the exponential function.  

Moreover, in the denominators one can simply replace  

L1 and  L2 by L. 

Now, one can sum the amplitude and rewrite the result  

such that the effect of the interference is explicit.  

Alternatively, one can directly calculate the intensity as follows. 
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The destructive interference will lead to zero intensity when cos(2 sin ) 1ka    . This 

happens when 2 sin 2ka n     or sin ( 2 ) / (2 ) 0.25 0.5n ka n       (according to 

the numbers given, 2 4ka  ). Since sin 1  , possible values of  sin are 0.25  and 

0.75 . Thus, destructive interference will be observed for 14.5 , 48.6    .  
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