

Answers for the Waves test, November 2016

(Question 1A)

These waves possess no nodes, i.e., x values at which the amplitude A is zero for all t . They are, instead, travelling waves.

For the first wave $A_1(x,t) = 2A_0 \cos(-\omega t + kx)$: At any subsequent time instance $t + \Delta t$ the wave profile remains the same but is shifted in space:

$A_0 \cos[-\omega(t + \Delta t) + k(x + \Delta x)] = A_0 \cos(-\omega t + kx)$ for all x and t . This condition is fulfilled for $k\Delta x - \omega\Delta t = 0$. Therefore, the phase velocity is $v = \Delta x / \Delta t = \omega / k$. This wave travels in the *positive* x -direction.

Similarly, for the second wave $A_2(x,t) = 2A_0 \cos(-\omega t - kx)$:

$A_0 \cos[-\omega(t + \Delta t) - k(x + \Delta x)] = A_0 \cos(-\omega t - kx)$ must hold for all x and t . This condition is fulfilled for $-k\Delta x - \omega\Delta t = 0$. Therefore, the phase velocity is $v = \Delta x / \Delta t = -\omega / k$. This wave travels in the *negative* x -direction.

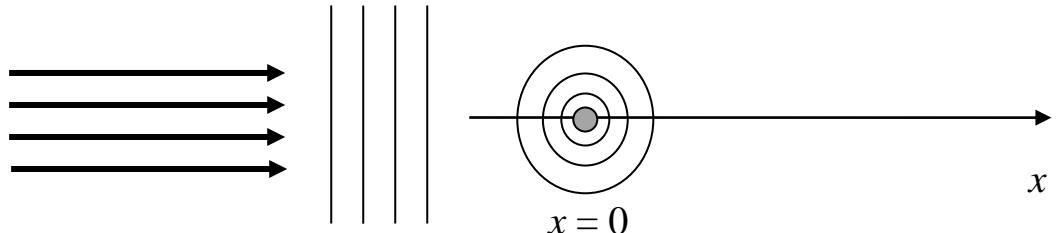
(Question 1B)

Using trigonometric relations provided, one can easily derive

$$\begin{aligned} A_1(x,t) + A_2(x,t) &= A_0 [\cos(-\omega t + kx) + \cos(-\omega t - kx)] \\ &= 2A_0 \cos(-\omega t) \cos(kx) = 2A_0 \cos(\omega t) \cos(kx) \end{aligned}$$

This is a standing wave since there are x values where the amplitude is equal to 0 for all t . The position of these nodes is governed by the relation $\cos(kx) = 0$, which is satisfied at $kx = \pi/2 + n\pi$. Thus, the positions of the nodes is $x = (\pi/2 + n\pi)/k = \lambda/4 + n\lambda/2$, where $n = 0, \pm 1, \pm 2, \dots$

(Question 2A)



The incident plane wave is written as $A_0 e^{i\omega t - ikx}$ (the first term). The scattered wave can be

written as $A_0 \frac{b}{r} e^{i\omega t - ikr}$. For the points on the x axis $r = |x|$, i.e., $r = x$ for $x > 0$ and $r = -x$ for $x < 0$. Thus, the sum of the incident wave and the wave scattered by the second atom can be written as

$$A(x,t) = A_0 e^{i\omega t - ikx} + A_0 \frac{b}{x} e^{i\omega t - ikr} \text{ for } x > 0 \text{ and}$$

$$A(x,t) = A_0 e^{i\omega t - ikx} + A_0 \frac{b}{x} e^{i\omega t + ikr} \text{ for } x < 0.$$

(Question 2B)

After a simple calculation, one gets (assuming b is real)

$$\begin{aligned} I(x=0) &= \left(A_0 e^{i\omega t - ikx} + A_0 \frac{b}{x} e^{i\omega t + ikx} \right) \left(A_0^* e^{-i\omega t + ikx} + A_0^* \frac{b}{x} e^{-i\omega t - ikx} \right) \\ &= |A_0|^2 \left[1 + \frac{b^2}{x^2} + \frac{b}{x} (e^{2ikx} + e^{-2ikx}) \right] = |A_0|^2 \left(1 + 2 \frac{b}{x} \cos(kx) + \frac{b^2}{x^2} \right) \end{aligned}$$

(Question 3A)

At the detector position one has to sum the spherical waves scattered by both scatters:

$$A = A_0 \frac{b}{L_1} e^{i\omega t - ikL_1} + A_0 \frac{b}{L_2} e^{i\omega t - ikL_2}.$$

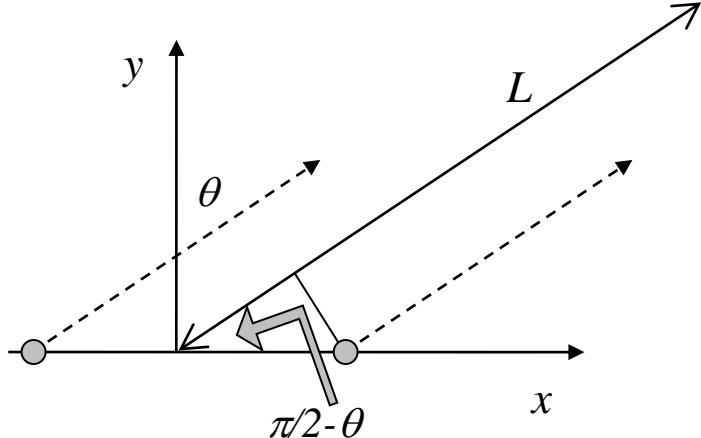
To calculate L_1 and L_2 , one can use the cosine theorem:

$$(L_1)^2 = L^2 + a^2 - 2aL \cos\left(\frac{\pi}{2} + \theta\right) = L^2 + a^2 + 2aL \sin \theta$$

$$(L_2)^2 = L^2 + a^2 - 2aL \cos\left(\frac{\pi}{2} - \theta\right) = L^2 + a^2 - 2aL \sin \theta.$$

By neglecting the a^2 term and expanding the square root into the Taylor series, one get the desired relations: $L_1 \approx L + a \sin \theta$ and $L_2 \approx L - a \sin \theta$.

The same one can do by simply saying that the directions to the detector from the scatter 1 and 2 are practically parallel. The desired relations can be easily obtained using the figure:



Next step in the derivation is simply replacing $(1/L_1)$ and $(1/L_2)$ by $(1/L)$ since this is a slowly-varying function. However, one has to take into account the terms linear in a in the fast-varying complex exponent. We arrive then at the desired relation:

$$A = A_0 \frac{b}{L} e^{i\omega t - ik(L - a \sin \theta)} + A_0 \frac{b}{L} e^{i\omega t - ik(L + a \sin \theta)}$$

(Question 3B)

$$I = |A|^2 = |A_0|^2 \frac{|b|^2}{L^2} \left\{ 1 + 1 + e^{i2ka \sin \theta} + e^{-i2ka \sin \theta} \right\} = 2 |A_0|^2 \frac{|b|^2}{L^2} \left\{ 1 + \cos[2ka \sin \theta] \right\}$$

One gets a minimum when $\cos[2ka \sin \theta] = -1$. The first minimum is at $2ka \sin \theta = \pi$ or $\sin \theta = (1/4)(2\pi/k)(1/a) = \lambda/4a$. With the numbers given $\sin \theta = 0.0005$ or $\theta = 0.0005 \text{ rad} = 0.029^\circ$.

(Question 4A)

One needs to explain two points here:

(a) The amplitude of the waves reduces with the distance since the wave is spreading over an increasing area. The total power P of the wave can be calculated as its intensity at a distance r , proportional to $|A(\vec{r}, t)|^2$, times the perimeter $2\pi r$ of the circle. To ensure the energy conservation law the total power P should be independent of the choice of r . Thus, the amplitude must reduce as $1/\sqrt{r}$.

(b) A circular wave propagates in all directions along the surface. Therefore, its phase must be the function of the distance travelled but not of the direction. Moreover, the phase $\omega t - kr$ propagates outwards: with increasing t one has to increase r to stay at the same phase in the wave. The complex exponent $e^{i\omega t - ikr}$ perfectly satisfies this condition.

(Question 4B)

Similar to 3A,

$$(L_1)^2 = L^2 + a^2 - 2aL \cos\left(\frac{\pi}{2} - \theta\right) = L^2 + a^2 - 2aL \sin \theta$$

$$(L_2)^2 = L^2 + a^2 - 2aL \cos\left(\frac{\pi}{2} + \theta\right) = L^2 + a^2 + 2aL \sin \theta$$

By neglecting the a^2 terms and using the Taylor expansion

$\sqrt{1+x} \approx 1+x/2$ for small x , one gets

$$L_1 \approx L - a \sin \theta$$

$$L_2 \approx L + a \sin \theta$$

which can be used in the exponential function.

Moreover, in the denominators one can simply replace L_1 and L_2 by L .

Now, one can sum the amplitudes and rewrite the result such that the effect of the interference is explicit.

Alternatively, one can directly calculate the intensity as follows.

$$I = A(\vec{r}, t)A^*(\vec{r}, t)$$

$$\begin{aligned} &= \left(\frac{A_0}{\sqrt{L}} e^{i\omega t - ikL + ika \sin \theta} + \frac{A_0}{\sqrt{L}} e^{i\omega t - ikL - ika \sin \theta} \right) \left(\frac{A_0^*}{\sqrt{L}} e^{-i\omega t + ikL - ika \sin \theta} + \frac{A_0^*}{\sqrt{L}} e^{-i\omega t + ikL + ika \sin \theta} \right) \\ &= \frac{|A_0|^2}{L} (1 + 1 + e^{2ika \sin \theta} + e^{-2ika \sin \theta}) = 2 \frac{|A_0|^2}{L} [1 + \cos(2ka \sin \theta)] \end{aligned}$$

The destructive interference will lead to zero intensity when $\cos(2ka \sin \theta) = -1$. This happens when $2ka \sin \theta = \pi + 2\pi n$ or $\sin \theta = (\pi + 2\pi n) / (2ka) = 0.25 + 0.5n$ (according to the numbers given, $2ka = 4\pi$). Since $|\sin \theta| \leq 1$, possible values of $\sin \theta$ are ± 0.25 and ± 0.75 . Thus, destructive interference will be observed for $\theta \approx \pm 14.5^\circ, \pm 48.6^\circ$.

