Answers for the Waves test, November 2016

(Question 1A)

These waves possess no nodes, i.e., x values at which the amplitude A is zero for all t.
They are, instead, travelling waves.

For the first wave A (X,t)=2A, cos(-at +Kkx): At any subsequent time instance t + At

the wave profile remains the same but is shifted in space:

A, cos| —a(t + At) +K(X+ AX) | = Ay cos(—at +kx) for all x and t. This condition is
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fulfilled for KAX— At =0. Therefore, the phase velocity is v = /At = A . This

wave travels in the positive x-direction.
Similarly, for the second wave A,(X,t)=2A,cos(—at —KX):

A, cos| —a(t+At) =K (X + AX) | = A, cos(—at —kx) must hold for all x and t. This
condition is fulfilled for —kAX— @At =0 . Therefore, the phase velocity is

_AX/ —_w - - ive x-directi
V= /At = A . This wave travels in the negative x-direction.

(Question 1B)
Using trigonometric relations provided, one can easily derive

A (X, )+ A (X,t) = Ay| cos(—at +Kkx) +cos(—at —kX) |
=2 A, cos(—at) cos(kx) = 2 A, cos(at) cos(kx)

This is a standing wave since there are x values where the amplitude is equal to O for all
t. The position of these nodes is governed by the relation cos(kx) =0, which is

satisfied at Kx=7/2+ns . Thus, the positions of the nodes is
X=(zl2+nz)lk=A/4+nA/2, where n=0,+1, +2,...

(Question 2A)
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(the first term). The scattered wave can be

iwt—ikx

The incident plane wave is written as A€

iwt—ikr

b
written as A ;e . For the points on the x axis =|X| ,i1.e., r=X forx>0and r=—X for

x < 0. Thus, the sum of the incident wave and the wave scattered by the second atom can be
written as

iot—ikx D imt—ike
A(x,t) = A ™ +Ao;e M for x > 0 and

iot—ikx b iot+i
A(x,t) = A ™ +Ao;e M forx < 0.
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(Question 2B)
After a simple calculation, one gets (assuming b is real)

1(x=0)= (Abei'”“kx + A Eei“’”‘”)( Ajeit . A se"‘“"xj
—‘A)‘ {1+ LD
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( 2lkx 4 g 2ikx )} A £1+2 cos(kx)+—2J
(Question 3A)
At the detector position one has to sum the spherical waves scattered by both scatters:
A= Ab b |wt ikLy +Ab la)t |kL2
L1
To calculate Ly and Lo, one can use the cosine theorem:

(L) =L"+a’ —2aLcos(%+0j =L*+a’+2aLsin®

('—2)2 =L1?+a? —2aLcos(%—6’j= L* +a®—2aLsing

By neglecting the a? term and expanding the square root into the Taylor series, one get the
desired relations: Ly~ L +asind and Lo~L -asind.

The same one can do by simply saying that the directions to the detector from the scatter 1 and
2 are practically parallel. The desired relations can be easily obtained using the figure:

7i2-6

Next step in the derivation is simply replacing (1/L1) and (1/L2) by (1/L) since this is a slowly-
varying function. However, one has to take into account the terms linear in a in the fast-
varying complex exponent. We arrive then at the desired relation:

A= A) Eeia}t—ik(L—asina) + A) Eeia}t—ik(L+asin0)
L L

(Question 3B)
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One get a minimum when cos|2kasin 8] =—1. The first minimum is at 2kasiné = or
sin@ = (1/4)(2x 1 k)(1/ a) = A/ 4a . With the numbers given sin@=0.0005 or
¢ =0.0005 rad =0.029",

(Question 4A)
One needs to explain two points here:
(a) The amplitude of the waves reduces with the distance since the wave is spreading over
an increasing area. The total power P of the wave can be calculated as its intensity at a

- - v 2 - - -
distance r, proportional to |A(r,t)| , times the perimeter 2771 of the circle. To
ensure the energy conservation law the total power P should be independent of the

choice of r. Thus, the amplitude must reduce as }{/F :

(b) A circular wave propagates in all direction along the surface. Therefore, its phase must
be the function of the distance travelled but not of the direction. Moreover, the phase

at —Kr propagates outwards: with increasing t one has to increase I' to stay at the

same phase in the wave. The complex exponent gl perfectly satisfies this

condition.

(Question 4B)
Similar to 3A,

(L) =L +a? —2aLcos(%—49) =L’ +a*-2aLsing

2 _ 2 2 Jin 2 2 .
(L) =L+a 2aLcos(A+9)_L +a’+2alLsing
By neglecting the a? terms and using the Taylor expansion

N1+ X =1+ X/ 2 for small x, one gets

L, ~L—-asind

L, =L+asing
which can be used in the exponential function.
Moreover, in the denominators one can simply replace
Liand Lo byL.

Now, one can sum the amplitude and rewrite the result

such that the effect of the interference is explicit.
Alternatively, one can directly calculate the intensity as follows.

I = A(F, DA (T,1)

Ab iwt—ikL+ikasin@ Ab iwt—ikL—ikasinGj A{; —iwt+ikL—ikasin@ A\:S —iwt+ikL+ikasin @
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The destructive interference will lead to zero intensity when cos(2kasiné) =—1. This
happens when 2kasin@ =z +2zn or sin@ = (7 +2zn)/(2ka) =0.25+0.5n (according to

the numbers given, 2ka =47 ). Since [Sin6| <1, possible values of sin& are +0.25 and

+0.75 . Thus, destructive interference will be observed for € = £14.5°,+48.6°



