
Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The length of v is ‖v‖ =
√
〈v, v〉 =

√
v21 + v22 + v23 =

√
1 + 1 + 0 =

√
2 and similarly ‖w‖ =

√
2.

Moreover,

〈v, w〉 = 1 · 1 + 1 · 0 + 0 · 1 = 1.

b) We show that Z is non-empty and closed under addition and scalar multiplication:

• Choosing a = b = 0 shows that 0 ∈ Z.

• Let u, z ∈ Z, then z = av + bw and u = cv + dw for a, b, c, d ∈ R and

z + u = av + bw + cv + dw = (a+ c)v + (b+ d)w.

Since a+ b, c+ d ∈ R, we find that z + u ∈ Z.

• Let z ∈ Z and r ∈ R. Then z = av+ bw with a, b ∈ R and rz = r(av+ bw) = (ra)v+ (rb)w.
As ra, rb ∈ R, it follows that rz ∈ Z.

c) Following the Gram-Schmidt orthonormalization procedure, we set

v∗ =
v

‖v‖
a)
=

1√
2
v,

and

w̃ = w − 〈w, v∗〉v∗ = w − 〈w, v〉
‖v‖2

v = w − 1

2
v =

1

2

 1
−1
2

 .

One can easily double-check that v∗ and w̃ are indeed orthogonal. It remains to normalize w̃. As

‖w̃‖2 = w̃2
1 + w̃2

2 + w̃2
3 =

(1

2

)2
+
(1

2

)2
+ 12 =

3

2
,

we set

w∗ =
w̃

‖w̃‖
=

1√
6

 1
−1
2

 .

By construction, the vectors v∗ and w∗ form an orthonormal basis of Z.

d) Let z =

6
0
0

. One obtains for the projection Pz of z onto Z that

Pz = 〈z, v∗〉v∗ + 〈z, w∗〉w∗ =
1

2
〈z, v〉v +

4

6
〈z, w̃〉w̃ = 3v + 2w̃ =

4
2
2

 .
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Problem 2.

a) Let p, q ∈ PR and r, s ∈ R, then by the sum rule of differentiation,

(D(rp+ sq))(x) = x2(rp+ sq)′′(x) + 2x(rp+ sq)′(x) = x2(rp′′(x) + sq′′(x)) + 2x(rp′(x) + sq′(x))

= r(x2p′′(x) + 2xp′(x)) + s(x2q′′(x) + 2xq′(x)) = r(Dp)(x) + s(Dq)(x)

for all x ∈ R. This shows that D is a linear operator.

b) Let k ∈ N0. Then for x ∈ R,

(Dpk)(x) = x2k(k − 1)xk−2 + 2xkxk−1 = k(k − 1)xk + 2kxk = (k2 − k + 2k)xk = (k2 + k)pk(x).

Hence, Dpk = (k2 + k)pk. Since pk is non-trivial, this shows that pk is an eigenfunction of D and
the corresponding eigenvalue is k2 + k.

c) To show that 〈·, ·〉 is an inner product, we prove linearity in the first argument, symmetry,
positivity and definiteness:

• Linearity in the first argument and symmetry are immediate consequences of the linearity
of the integral and the properties of R. More precisely, for p, p̃, q ∈ PR and α, β ∈ R,

〈αp+ βp̃, q〉 =

∫ ∞
−∞

(αp(x) + βp̃(x))q(x)e−x
2

dx

= α

∫ ∞
−∞

p(x)q(x)e−x
2

dx+ β

∫ ∞
−∞

p̃(x)q(x)e−x
2

dx = α〈p, q〉+ β〈p̃, q〉.

Similarly one can prove that 〈p, q〉 = 〈q, p〉.
• For all p ∈ PR it holds that 〈p, p〉 =

∫∞
−∞ p(x)2e−x

2
dx ≥ 0, since the integrand p(x)2e−x

2
is

non-negative for every x ∈ R.

• If 0 = 〈p, p〉 =
∫∞
∞ p(x)2e−x

2
dx, then the hint tells us that p(x)2e−x

2
= 0 for all x ∈ R. Since

e−x
2
> 0, it follows that p(x)2 = 0 and thus p(x) = 0 for all x ∈ R, meaning that p is the

null polynomial.

d) Accounting for b) gives that Dp1 = 2p1. Then

〈Dp1, p0〉 = 2〈p1, p0〉 =

∫ ∞
−∞

2xe−x
2

dx = lim
N→−∞

e−N
2 − lim

N→∞
e−N

2

= 0.

This calculation shows that Dp1 and p0 are orthogonal.

Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously diffe-
rentiable.

b) For k = 0 we have that

f̂0 =
1

2

∫ 1

−1
f(x) dx =

∫ 1

0

−3x+ 1 dx = −3

2
+ 1 = −1

2
.
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In the case k 6= 0, we use integration by parts to obtain

f̂k =
1

2

∫ 1

−1
f(x)e−ikπx dx =

1

2

∫ 1

−1
e−ikπx dx︸ ︷︷ ︸
=0

+
3

2

[∫ 0

−1
xe−ikπx dx−

∫ 1

0

xe−ikπx dx
]

=
3

2

[∫ 0

−1
x cos(kπx) dx−

∫ 1

0

x cos(kπx) dx−
∫ 0

−1
x sin(kπx) dx+

∫ 1

0

x sin(kπx) dx︸ ︷︷ ︸
=0

]

= 3

∫ 0

−1
x cos(kπx) dx = −3

∫ 0

−1

1

kπ
sin(kπx) dx =

3

k2π2
(1− cos(kπx))

=

{
0 if k even,

6
k2π2 if k odd.

c) Since f is 2-periodic, piecewise continuously differentiable and continuous, the Fourier inversion
formula tells us that for x ∈ R,

f(x) =
∞∑

k=−∞

f̂ke
ikπx dx,

where the series on the right-hand side converges. As a consequence of the Euler formula we can
write

f(x) = f̂0 +
∞∑
k=1

(f̂k + f̂−k) cos(kπx) + i(f̂k − f̂−k) sin(kπx)

= a0 +
∞∑
k=1

ak cos(kπx) + bk sin(kπx), x ∈ R,

with a0 = f̂0, ak = f̂k + f̂−k and bk = i(f̂k− f̂−k) for k ∈ N. Since f is even, we have that f̂k = f̂−k
for all k ∈ Z. Consequently, bk = 0 and ak = 2f̂k for k ∈ N, so that

f(x) = a0 +
∞∑
k=1

ak cos(kπx) =
∞∑
k=0

ak cos(kπx), x ∈ R. (5)

Using the calculations in b), we have that a0 = −1
2
, and ak = 0 for k even and ak = 12

k2π2 for k
odd.

d) Setting x = 0 in (5) results in

1 = f(0) = −1

2
+

∑
k=1, k odd

12

k2π2
,

or equivalently,

π2

8
=

∑
k=1, k odd

1

k2
=

1

12
+

1

32
+

1

52
+

1

72
+ . . . .
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Problem 4.

a) Observe that with F denoting the Fourier transformation with respect to the x-variable, we
obtain for every t > 0 that

F(t ∂
∂x
u(·, t))(s) = t(is)û(s, t) = ist û(s, t), s ∈ R,

and

F( ∂
∂t
u(·, t))(s) =

∫ ∞
−∞

∂

∂t
u(x, t)e−isx dx =

∂

∂t

∫ ∞
−∞

u(x, t)e−isx dx =
∂

∂t
û(s, t), s ∈ R.

Hence, applying F to (1) and (2) results in

∂

∂t
û(s, t) + ist û(s, t) = 0 and û(s, 0) = ĝ(s)

for every s ∈ R, or in other words, û(s, ·) solves the first order differential equation with non-
constant coefficients

v′(t) + ist v(t) = 0, t > 0, (6)

subject to the initial condition v(0) = ĝ(s).

b)We verify that the suggested formula solves (6) by plugging it in. Indeed, for every s ∈ R we

find with the chain rule that d
dt
e−i

t2

2
s = −ist e−i t

2

2
s, so that

d

dt
(ĝ(s)e−i

t2

2
s) + ist ĝ(s)e−i

t2

2
s = 0.

Moreover, û(s, 0) = ĝ(s)e−i
02

2
·s = ĝ(s). This shows that û(s, ·) solves the initial value problem

derived in b).

c) Since ĝ(0) =
∫∞
−∞ g(x) dx and û(0, t) =

∫∞
−∞ u(x, t) dx for every t > 0, we find in view of b) that∫ ∞

−∞
u(x, t) dx = û(0, t) = ĝ(0)e−i

t2

2
·0 = ĝ(0) =

∫ ∞
−∞

g(x) dx.

Consequently, if
∫∞
−∞ g(x) dx = 0, then

∫∞
−∞ u(x, t) dx = 0 for all t > 0.

d) It follows from the change of variables y = x− α that

f̂α(s) =

∫ ∞
−∞

fα(x)e−isx dx =

∫ ∞
−∞

f(x− α)e−isx dx =

∫ ∞
−∞

f(y)e−is(y+α) dy

= e−isα
∫ ∞
−∞

f(y)e−isy dy = e−isαf̂(s), s ∈ R.

e) In view of b) and d) one obtains that

û(s, t) = ĝ(s)e−i
t2

2
s = ĝ t2

2

(s), s ∈ R, t ≥ 0.

Using Fourier inversion we infer for every t ≥ 0 that

u(x, t) = F−1(û(·, t))(x) = g t2

2

(x) = g
(
x− t2

2

)
, x ∈ R.
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Problem 5.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously diffe-
rentiable and has compact support, in particular is f absolutely integrable.

b) If s 6= 0 we find that

f̂(s) =

∫ ∞
−∞

f(t)e−ist dt =

∫ 1

−1
e−ist dt−

∫ 1

−1
t2e−ist dt

=
2 sin(s)

s
+

4 sin(s)

s3
− 4 cos(s)

s2
− 2 sin(s)

s
= 4g(s).

In the third equality we have used the result of the following computation, for which we apply
integration by parts twice,∫ 1

−1
t2e−its dt =

2

is

∫ 1

−1
te−ist dt+

1

is
(eis − e−is)

=
2

(is)2

∫ 1

−1
e−ist dt− 2

(is)2
(eis + e−is) + 2

sin(s)

s

=
2

−s2
( 1

−is
e−is +

1

is
eis
)

+
4 cos(s)

s2
+

2 sin(s)

s
= −4 sin(s)

s3
+

4 cos(s)

s2
+

2 sin(s)

s
.

In the case s = 0 one has that

f̂(0) =

∫ ∞
−∞

f(t) dt = 2

∫ 1

0

1− t2 dt = 2
(

1− 1

3

)
=

4

3
.

Finally, since f̂ is continuous, we see that f̂ = ag with a = 4.

c) From b) and Plancherel’s formula we infer that∫ ∞
−∞
|g(s)|2 ds =

1

42

∫ ∞
−∞
|f̂(s)|2 ds =

π

8

∫ ∞
−∞
|f(s)|2 ds =

π

8

∫ 1

−1
(1− t2)2 dt

=
π

4

∫ 1

0

1− 2t2 + t4 dt =
2π

15
.

Problem 6∗.

a) Let v(t) =

(
f(t)
f ′(t)

)
for all t ∈ R. Then

v′ =

(
f ′

f ′′

)
=

(
0 1
− k
m

0

)(
f
f ′

)
= Av with A =

(
0 1

− k
m

0

)
.

b) Solving (4) with initial value v(0) = e1 is equivalent to solving (3) subject to the initial

conditions f(0) = 1 and f ′(0) = 0. Since the roots of the polynomial λ2 + k
m

are λ1/2 = ±i
√

k
m

,

the general solution to (3) is f(t) = αei
√

k
m
t + βe−i

√
k
m
t with α, β ∈ C. We infer from the initial

conditions that

1 = f(0) = α + β and 0 = f ′(0) = i

√
k

m
(α− β).
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Hence α = β = 1
2

and f(t) = cos
(√

k
m
t
)

for t ∈ R. Consequently, the sought solution is

v(t) =

 cos
(√

k
m
t
)

−
√

k
m

sin
(√

k
m
t
)
 , t ∈ R.

c) For all v, w ∈ C2 and α, β ∈ C one obtains that

H(αv + βw) = iA(αv + βw) = iA(αv) + iA(βw) = αiAv + βiAw = αH(v) + βH(w),

which shows that H is a linear operator.

d) We will prove that H is Hermitian if and only if k = m. Observing that Av =

(
v2
− k
m
v1

)
for

v ∈ C2, we obtain for all v, w ∈ C2 that

〈Hv,w〉 − 〈v,Hw〉 = i〈Av,w〉 − (−i)〈v, Aw〉 = i(〈Av,w〉+ 〈v,Aw〉)
= i
(
v2w1 − k

m
v1w2 + v1w2 − k

m
v2w1

)
= i(1− k

m
)(v1w2 + v2w1).

Since in general v1w2 + v2w1 6= 0 (take e.g. v = e1 and w = e2), this implies that H is Hermitian
if and only if 1− k

m
= 0, or equivalently k = m.

e) Considering that v is a solution to (4) we find that

d

dt
‖v(t)‖2 =

d

dt
〈v(t), v(t)〉 = 〈v′(t), v(t)〉+ 〈v(t), v′(t)〉 = 〈Av(t), v(t)〉+ 〈v(t), Av(t)〉 =

= 〈−iHv(t), v(t)〉+ 〈v(t),−iHv(t)〉 = −i〈Hv(t), v(t)〉+ i〈v(t), Hv(t)〉 = 0, t ∈ R.

In the last step we used the fact that H is Hermitian.

As a consequence, the norm of v(t) is constant for all t ∈ R. In the case k = m the solution from
b) lives on a circle in the two-dimensional real plane.
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