Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The length of vis [[v]| = \/(v,v) = /v? + 03 +v2 = VT + 1+ 0 = v/2 and similarly ||w|| = V2.
Moreover,

(v,w)y=1-14+1-04+0-1=1.

b) We show that Z is non-empty and closed under addition and scalar multiplication:
e Choosing a = b = 0 shows that 0 € Z.
o Let u,z € Z, then z = av + bw and u = cv + dw for a,b,c,d € R and

z+u=av+bw+cv+dw=(a+c)v+ (b+ d)w.

Since a + b,c+ d € R, we find that z +u € Z.

o Let z € Z and r € R. Then z = av+bw with a,b € R and rz = r(av +bw) = (ra)v+ (rb)w.
As ra,rb € R, it follows that rz € Z.

¢) Following the Gram-Schmidt orthonormalization procedure, we set
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One can easily double-check that v* and w are indeed orthogonal. It remains to normalize w. As

N2 -2 | -2 | =2 1\2 IN2 o 3
)2 =@t + a5+ a5 = (5) +(5) +1 =5
we set
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By construction, the vectors v* and w* form an orthonormal basis of Z.
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d) Let z= | 0 |. One obtains for the projection Pz of z onto Z that
0
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Pz = (z,0")0" + (z,w")w" = §<z,v>v + 6<Z’ W)W = 3v+ 2w = | 2
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Problem 2.
a) Let p,q € Pr and r, s € R, then by the sum rule of differentiation,

(D(rp + s9))(x) = 2*(rp + sq)" (x) + 2z(rp + sq)' (z) = 2*(rp" (z) + s¢" (x)) + 2x(rp (z) + s¢'(x))
= r(2®p"(x) + 2zp/(z)) + s(2?¢" (x) + 224/ (x)) = r(Dp)(z) + s(Dq)(x)

for all x € R. This shows that D is a linear operator.
b) Let k € Ny. Then for z € R,

(Dpg)(x) = ka(k — 1):L'k’2 + 20kt = k(k — 1)£Ck + 2kak = (k2 —k+ 2k)xk = (k2 + k)pi(z).

Hence, Dpy, = (k* + k)pg. Since py is non-trivial, this shows that pj is an eigenfunction of D and
the corresponding eigenvalue is k? + k.

c¢) To show that (-,-) is an inner product, we prove linearity in the first argument, symmetry,
positivity and definiteness:

e Linearity in the first argument and symmetry are immediate consequences of the linearity
of the integral and the properties of R. More precisely, for p,p,q € Pr and o, f € R,

[e.e]

(ap + B5,q) = / (ap(a) + Bi(z))a(a)e ™ da
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a / T @) do+ / " p(@)a@)e " dz = alp.q) + Bl q).

Similarly one can prove that (p,q) = (g, p).

e For all p € Py it holds that (p,p) = ffooop(w)2e_m2 dx > 0, since the integrand p(z)%e™* is
non-negative for every x € R.

o If0 = (p,p) = [ p(x)%e~*" dx, then the hint tells us that p(z)%e~*" = 0 for all z € R. Since
e > 0, it follows that p(x)? = 0 and thus p(x) = 0 for all z € R, meaning that p is the
null polynomial.

d) Accounting for b) gives that Dp; = 2p;. Then

e}

(Dp1,po) = 2(p1,p0) = / 22e " dr = lim e — lim e =0.
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This calculation shows that Dp; and pg are orthogonal.

Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously diffe-
rentiable.

b) For k = 0 we have that

1

fo==1{ f = | Br+ldr=—2+1=—=.



In the case k # 0, we use integration by parts to obtain
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_J0 if k even,

| & ifkodd.

¢) Since f is 2-periodic, piecewise continuously differentiable and continuous, the Fourier inversion
formula tells us that for = € R,

9]
— E fkezkﬂx dx,
k=—o00

where the series on the right-hand side converges. As a consequence of the Euler formula we can
write

f(@) = fo+ Z fi + for) cos(kmz) + i(fu — for) sin(krz)

=ap+ Z ay, cos(kmz) + by sin(kmx), z € R,
k=1

with ag = fo, aj = fk—l—f,k and by, = z(fk — f,k)Afor k € N. Since f is even, we have that fk = f,k
for all k € Z. Consequently, by = 0 and a; = 2f; for k € N, so that

flz) =ao+ Z ay cos(krx) = Z ay, cos(kmz), z €R. (5)
k=1 =
Using the calculations in b), we have that ag = —%, and a, = 0 for k£ even and a; = % for k

odd.
d) Setting = = 0 in (5) results in
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k=1, kodd
or equivalently,
7r2_ 1_1+1+1+1+
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Problem 4.

a) Observe that with F denoting the Fourier transformation with respect to the z-variable, we
obtain for every ¢ > 0 that

FtLu(-,1))(s) = t(is)a(s, t) = ista(s,t), s €R,

and

© 9 . o [ , 0
0 . — Il —1i8x — —1i8T — 5
F(mu(-,1))(s) / atu(alz,t)e dx Gt/ u(z,t)e " dx atu(s,t), s € R.
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Hence, applying F to (1) and (2) results in

0
Eﬂ(s,t} +istu(s,t) =0 and  4(s,0) = g(s)

for every s € R, or in other words, u(s,-) solves the first order differential equation with non-
constant coefficients

V'(t) +isto(t) =0, t >0, (6)

subject to the initial condition v(0) = g(s).
b)We verify that the suggested formula solves (6) by plugging it in. Indeed, for every s € R we
2
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find with the chain rule that %6”75 = —iste "2% so that
d 2 2
(§(s)e75°) st g(s)e T = 0.
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Moreover, 4(s,0) = g(s)e "z = §(s). This shows that a(s,-) solves the initial value problem
derived in b).

¢) Since §(0) = [ g(x) dz and 4(0,t) = [ u(x,t) dx for every t > 0, we find in view of b) that
oo -t2 oo
| uteyde = (0.0 = 5050 =40 = [ gla)d

Consequently, if [*° g(z)dz =0, then [*° u(x,t)dz =0 for all ¢ > 0.
d) It follows from the Change of variables y = x — « that

= / fa($ T dy = / f X — Oé STy — / f *ZS(era

e [ ey = i),

e) In view of b) and d) one obtains that
2
i(s,t) = g(s)e 7" = gels),  seR, t>0.
2
Using Fourier inversion we infer for every ¢ > 0 that

u(e,t) = F A0 0)@) = go (o) —g(c— L), weR

2
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Problem 5.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously diffe-
rentiable and has compact support, in particular is f absolutely integrable.

b) If s # 0 we find that

£(s) :/ f(t)e_“tdt:/ e—istdt_/ 2oist gy
e . B

_ 2sin(s)  4sin(s) 4cos(s)  2sin(s)

= — =4 .
s + s3 52 s 9(s)

In the third equality we have used the result of the following computation, for which we apply
integration by parts twice,
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In the case s = 0 one has that
~ S 1 1 4
f(0)=/ f(t)dt:2/ 1—t2dt:2<1——>:__
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Finally, since f is continuous, we see that f = ag with a = 4.

¢) From b) and Plancherel’s formula we infer that

[Crsoras= 4 [Cifopas=T [T iperas =T [ a-era
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T [ 2m
=— [ 1-2 +t'dt = .
4/0 * 15
Problem 6*.
a) Let v(t) = (JJ:,((I?)) for all ¢ € R. Then
/ 0 1
v = (j:,,) _ (_Oﬁ (1)) (JJ;/) = Av with A = (_E O) .
" m

b) Solving (4) with initial value v(0) = e; is equivalent to solving (3) subject to the initial
conditions f(0) = 1 and f’(0) = 0. Since the roots of the polynomial \* + £ are \;/, = ii\/%,

the general solution to (3) is f(t) = eVt + ﬁe’i\/gt with «, 8 € C. We infer from the initial
conditions that

1=f0)=a+p and 0= f(0) =i/ —(a—p).



Hence a = g = % and f(t) = cos(\/gt) for t € R. Consequently, the sought solution is

B Cos( %t)
v(t) = —\/%sin(\/%t) : teR.

c) For all v,w € C? and «, 3 € C one obtains that
H(aw + pw) = iA(av + pw) = iA(av) + iA(fw) = aiAv + BiAw = aH (v) + SH (w),

which shows that H is a linear operator.

d) We will prove that H is Hermitian if and only if £ = m. Observing that Av = < 1;20 ) for
1

m

v € C?, we obtain for all v, w € C? that
(Hv,w) — (v, Hw) = i{Av,w) — (—i)(v, Aw) = i({Av,w) + (v, Aw))
= i(Uz@l — %Ulmg + Ulwg — %Ugwl) = 2(1 — %)(Ulwg + UQ@l).
Since in general v1Wsy 4+ voW; # 0 (take e.g. v = e; and w = ey), this implies that H is Hermitian
if and only if 1 — % = 0, or equivalently k = m.
e) Considering that v is a solution to (4) we find that

H O = i( (t),0(t)) = (V'(1), v(t)) + (v(t), V(1)) = (Av(t),v(t)) + (v(t), Av(t)) =
= (—iHv(t),v(t)) + (v(t), —iHv(t)) = —i(Hv(t),v(t)) + i{v(t), Hv(t)) = 0, teR.
In the last step we used the fact that H is Hermitian.

As a consequence, the norm of v(t) is constant for all ¢ € R. In the case k = m the solution from
b) lives on a circle in the two-dimensional real plane.



