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Instructions:
e Write your name, student number, and problem number on every page you hand in.

e The use of textbooks, notes, calculators, and cell phones is not allowed.

Justify your answers.

Problem 6* and Problem 4 d)* are bonus questions.

Problem 1.

In R? with the standard inner product we consider the vectors

1 1
v=|[1 and w= 1[0
0 1
a) Determine the length of the vectors v and w, as well as the inner product (v, w). 2p
b) Show that Z = {av + bw : a,b € R} is a linear subspace of R?. 2p
¢) The vectors v and w form a basis of Z, but they are neither orthogonal nor normalized, cf. a).
Apply the Gram-Schmidt algorithm to v and w to find an orthonormal basis of Z. 3p
6
d) Determine the orthogonal projection of z = | 0 | onto the linear subspace Z.
0 2p
Problem 2.

Let Pr be the linear space (over R) of all polynomials with real coefficients. We define the map
D :Pr — Pgr by

(Dp)(x) = 2*p"(x) + 2zp'(z),  wz€R,

for every p € Pg.

a) Prove that D is a linear operator. 2p
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b) Verify the following statement: For every integer k > 0 the polynomial p;, with py(z) = z* for
x € R is an eigenfunction of D. What are the corresponding eigenvalues? 3p

¢) Show that

(p,q) =/ p(z)g(x)e™ dx,  p,q € Pg,

—00

is an inner product on Pg. Hint: A proof that these integrals exist is not required. Moreover, you
may use without proof that if h is a continuous function such that ffooo h(z)dx = 0 and h > 0,

then h(z) = 0 for all z € R. Make clear where this statement is needed. 3p
d) Determine (Dpy, po) with pg and p; as in b). What do you conclude? Hint: Using the result of
b) can simplify the calculation. 2p
Problem 3.

Let f: R — R be the 2-periodic function given by

3x+1 iftze|-1,0],
pay= gt o Ere bl e

—3x+1 ifze(0,1),
a) Visualize the graph of the function f by drawing at least two periods. Ip
b) Determine the Fourier coefficients f for all k € Z. Hint: Treat the cases k = 0 and k # 0
separately. 4p
c¢) Argue why f can be expressed as a converging Fourier cosine series, i.e. f(x) = Y. a; cos(kmx)
for z € R with a; € R, and determine the coefficients ay. 3p
d) Use the result of ¢) to find the value of the series

1111 2

ﬁ+§+?+ﬁ+....

Problem 4.
Consider the initial value problem
ou  Ou )
t%—i-a—o in R x (0, 00), (1)
u(z,0) = g(z) for x € R, (2)

for v = u(z,t) : R x [0,00) — R, where g : R — R is a given continuously differentiable and
absolutely integrable function.

a) Apply Fourier transformation with respect to the z-variable to (1) and (2), and formulate the
resulting initial value problems for 4(s,-) with s € R. 3p

b) Show that for every s € R,

2

a(s,t) = g(s)e'z%,  t>0,

solves the problem derived in a). 3p
¢) If [*°_g(z) dz = 0, what can you say about [ wu(x,t)dz for t > 07 Hint: Use the result from
b) with s = 0. 2p
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d)* For « > 0 and f : R — C continuous and absolutely integrable, we define f, : R — C by
fa(z) = f(x — ) for z € R. Show that

(Ffa)(s) = fals) = e f(s)

for all s € R. 3p
e) Use the results from b) and d) to find the solution u(z,t) = g(x — %) to (1) and (2).
3p
Problem 5.
Consider the function
11—t if [t <1
f:R—>C, t— IH_,’
0 otherwise,
as well as the continuous function g : R — C with
g(s) = 81n§s) — cosgs) for s e R, s#0.
s s
a) Draw a picture of the graph of f. 1p
b) Determine the Fourier transform of f and show that it is a multiple of g, i.e. Ff = f = ag
with a € C. What is the precise value of a? 6p
¢) Use Plancherel’s formula and the result from b) to calculate [~7_[g(s)[*ds. 3p

Problem 6*.

Let k,m > 0. The linear second order differential equation

mf" = —kf 3)

for f = f(t) : R — C describes a harmonic oscillator with m the mass of the particle and k the
spring constant.

a) Rewrite (3) in terms of a vector-valued first order differential equation of the form

v = Av (4)
. . 0 1

for v = v(t) : R — C* with the matrix A= 0) %
b) Find the solution to (4) that satisfies the initial condition v(0) = ((1)) 3p
¢) Define H : C* — C? by Hv = iAv for v € C? with A as in a). Show that H is a linear operator.
Ip

d) Let C* be endowed with the standard inner product. For which values of m and k is H
Hermitian, i.e. (Hv,w) = (v, Hw) for all v,w € C*? 3p

e) Assume that m = k and take v to be a solution to (4). Use d) to determine the expression
Lllv(t)||* for all ¢ € R. What is the geometric interpretation of these findings for the solution
determined in b)? 3p



Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The length of vis [[v]| = \/(v,v) = /v? + 03 +v2 = VT + 1+ 0 = v/2 and similarly ||w|| = V2.
Moreover,

(v,w)y=1-14+1-04+0-1=1.

b) We show that Z is non-empty and closed under addition and scalar multiplication:
e Choosing a = b = 0 shows that 0 € Z.
o Let u,z € Z, then z = av + bw and u = cv + dw for a,b,c,d € R and

z+u=av+bw+cv+dw=(a+c)v+ (b+ d)w.

Since a + b,c+ d € R, we find that z +u € Z.

o Let z € Z and r € R. Then z = av+bw with a,b € R and rz = r(av +bw) = (ra)v+ (rb)w.
As ra,rb € R, it follows that rz € Z.

¢) Following the Gram-Schmidt orthonormalization procedure, we set

. Ua)lv

el V2

v

and

. - (w, v) 11
W =w— (w,v)v" =w— V=W — v = =
[[o]]? 2° 2

One can easily double-check that v* and w are indeed orthogonal. It remains to normalize w. As

N2 -2 | -2 | =2 1\2 IN2 o 3
)2 =@t + a5+ a5 = (5) +(5) +1 =5
we set
- 1
1
wt == — [ 1

By construction, the vectors v* and w* form an orthonormal basis of Z.

6
d) Let z= | 0 |. One obtains for the projection Pz of z onto Z that
0
1 4 A
Pz = (z,0")0" + (z,w")w" = §<z,v>v + 6<Z’ W)W = 3v+ 2w = | 2
2



Problem 2.
a) Let p,q € Pr and r, s € R, then by the sum rule of differentiation,

(D(rp + s9))(x) = 2*(rp + sq)" (x) + 2z(rp + sq)' (z) = 2*(rp" (z) + s¢" (x)) + 2x(rp (z) + s¢'(x))
= r(2®p"(x) + 2zp/(z)) + s(2?¢" (x) + 224/ (x)) = r(Dp)(z) + s(Dq)(x)

for all x € R. This shows that D is a linear operator.
b) Let k € Ny. Then for z € R,

(Dpg)(x) = ka(k — 1):L'k’2 + 20kt = k(k — 1)£Ck + 2kak = (k2 —k+ 2k)xk = (k2 + k)pi(z).

Hence, Dpy, = (k* + k)pg. Since py is non-trivial, this shows that pj is an eigenfunction of D and
the corresponding eigenvalue is k? + k.

c¢) To show that (-,-) is an inner product, we prove linearity in the first argument, symmetry,
positivity and definiteness:

e Linearity in the first argument and symmetry are immediate consequences of the linearity
of the integral and the properties of R. More precisely, for p,p,q € Pr and o, f € R,

[e.e]

(ap + B5,q) = / (ap(a) + Bi(z))a(a)e ™ da

—00

a / T @) do+ / " p(@)a@)e " dz = alp.q) + Bl q).

Similarly one can prove that (p,q) = (g, p).

e For all p € Py it holds that (p,p) = ffooop(w)2e_m2 dx > 0, since the integrand p(z)%e™* is
non-negative for every x € R.

o If0 = (p,p) = [ p(x)%e~*" dx, then the hint tells us that p(z)%e~*" = 0 for all z € R. Since
e > 0, it follows that p(x)? = 0 and thus p(x) = 0 for all z € R, meaning that p is the
null polynomial.

d) Accounting for b) gives that Dp; = 2p;. Then

e}

(Dp1,po) = 2(p1,p0) = / 22e " dr = lim e — lim e =0.

o0 N——oc0 N—o0

This calculation shows that Dp; and pg are orthogonal.

Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously diffe-
rentiable.

b) For k = 0 we have that

1

fo==1{ f = | Br+ldr=—2+1=—=.



In the case k # 0, we use integration by parts to obtain

1 [t . 1 3 0 4 1 '
— _/ f(a:)e—zkﬂx dr = _/ 6—zk7rx dx + = [/ $€_Zk7rx dx _/ xe—zkﬂm dﬂf:|
2 —1 2 —1 2 1 0
—/_/

=0

3 0 1 0 1
=5 [/ x cos(kmz) dx —/ x cos(kmx) dm—/ zsin(krx) dx —l—/ xsin(krz) dx}
0 0

—~1 -1

g

=0

0

= 3/ xcos(krz) dr = —3/ —Sln (kmzx) dx = kfﬂz(l — cos(kmz))
-1 ik

_J0 if k even,

| & ifkodd.

¢) Since f is 2-periodic, piecewise continuously differentiable and continuous, the Fourier inversion
formula tells us that for = € R,

9]
— E fkezkﬂx dx,
k=—o00

where the series on the right-hand side converges. As a consequence of the Euler formula we can
write

f(@) = fo+ Z fi + for) cos(kmz) + i(fu — for) sin(krz)

=ap+ Z ay, cos(kmz) + by sin(kmx), z € R,
k=1

with ag = fo, aj = fk—l—f,k and by, = z(fk — f,k)Afor k € N. Since f is even, we have that fk = f,k
for all k € Z. Consequently, by = 0 and a; = 2f; for k € N, so that

flz) =ao+ Z ay cos(krx) = Z ay, cos(kmz), z €R. (5)
k=1 =
Using the calculations in b), we have that ag = —%, and a, = 0 for k£ even and a; = % for k

odd.
d) Setting = = 0 in (5) results in

1 12

k=1, kodd
or equivalently,
7r2_ 1_1+1+1+1+
8 k2120 32 52 72



Problem 4.

a) Observe that with F denoting the Fourier transformation with respect to the z-variable, we
obtain for every ¢ > 0 that

FtLu(-,1))(s) = t(is)a(s, t) = ista(s,t), s €R,

and

© 9 . o [ , 0
0 . — Il —1i8x — —1i8T — 5
F(mu(-,1))(s) / atu(alz,t)e dx Gt/ u(z,t)e " dx atu(s,t), s € R.

—00 —00

Hence, applying F to (1) and (2) results in

0
Eﬂ(s,t} +istu(s,t) =0 and  4(s,0) = g(s)

for every s € R, or in other words, u(s,-) solves the first order differential equation with non-
constant coefficients

V'(t) +isto(t) =0, t >0, (6)

subject to the initial condition v(0) = g(s).
b)We verify that the suggested formula solves (6) by plugging it in. Indeed, for every s € R we
2

-t2 Lt
find with the chain rule that %6”75 = —iste "2% so that
d 2 2
(§(s)e75°) st g(s)e T = 0.

02
Moreover, 4(s,0) = g(s)e "z = §(s). This shows that a(s,-) solves the initial value problem
derived in b).

¢) Since §(0) = [ g(x) dz and 4(0,t) = [ u(x,t) dx for every t > 0, we find in view of b) that
oo -t2 oo
| uteyde = (0.0 = 5050 =40 = [ gla)d

Consequently, if [*° g(z)dz =0, then [*° u(x,t)dz =0 for all ¢ > 0.
d) It follows from the Change of variables y = x — « that

= / fa($ T dy = / f X — Oé STy — / f *ZS(era

e [ ey = i),

e) In view of b) and d) one obtains that
2
i(s,t) = g(s)e 7" = gels),  seR, t>0.
2
Using Fourier inversion we infer for every ¢ > 0 that

u(e,t) = F A0 0)@) = go (o) —g(c— L), weR

2
2



Problem 5.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously diffe-
rentiable and has compact support, in particular is f absolutely integrable.

b) If s # 0 we find that

£(s) :/ f(t)e_“tdt:/ e—istdt_/ 2oist gy
e . B

_ 2sin(s)  4sin(s) 4cos(s)  2sin(s)

= — =4 .
s + s3 52 s 9(s)

In the third equality we have used the result of the following computation, for which we apply
integration by parts twice,

! . 2 [t 1. :
/ t2€7zts dt = = te*lst dt + '_(ezs _ e*’LS)
— 18

1 5 J
2 L 2 . . i
= — / efzst dt — : (ezs + efzs> + QSIH(S)
(is)? )4 (is)? S
2 1 ) 1 . 4 cos(s 2sin(s 4 sin(s 4 cos(s 2sin(s
C 2 (L Ly deonl) | 2einle) __dsins) | deost) | 2einls)
—52\—1s 18 S S S S S

In the case s = 0 one has that
~ S 1 1 4
f(0)=/ f(t)dt:2/ 1—t2dt:2<1——>:__
—00 0 3 3

Finally, since f is continuous, we see that f = ag with a = 4.

¢) From b) and Plancherel’s formula we infer that

[Crsoras= 4 [Cifopas=T [T iperas =T [ a-era

[e9) 42 —00 8 —00 -1
T [ 2m
=— [ 1-2 +t'dt = .
4/0 * 15
Problem 6*.
a) Let v(t) = (JJ:,((I?)) for all ¢ € R. Then
/ 0 1
v = (j:,,) _ (_Oﬁ (1)) (JJ;/) = Av with A = (_E O) .
" m

b) Solving (4) with initial value v(0) = e; is equivalent to solving (3) subject to the initial
conditions f(0) = 1 and f’(0) = 0. Since the roots of the polynomial \* + £ are \;/, = ii\/%,

the general solution to (3) is f(t) = eVt + ﬁe’i\/gt with «, 8 € C. We infer from the initial
conditions that

1=f0)=a+p and 0= f(0) =i/ —(a—p).



Hence a = g = % and f(t) = cos(\/gt) for t € R. Consequently, the sought solution is

B Cos( %t)
v(t) = —\/%sin(\/%t) : teR.

c) For all v,w € C? and «, 3 € C one obtains that
H(aw + pw) = iA(av + pw) = iA(av) + iA(fw) = aiAv + BiAw = aH (v) + SH (w),

which shows that H is a linear operator.

d) We will prove that H is Hermitian if and only if £ = m. Observing that Av = < 1;20 ) for
1

m

v € C?, we obtain for all v, w € C? that
(Hv,w) — (v, Hw) = i{Av,w) — (—i)(v, Aw) = i({Av,w) + (v, Aw))
= i(Uz@l — %Ulmg + Ulwg — %Ugwl) = 2(1 — %)(Ulwg + UQ@l).
Since in general v1Wsy 4+ voW; # 0 (take e.g. v = e; and w = ey), this implies that H is Hermitian
if and only if 1 — % = 0, or equivalently k = m.
e) Considering that v is a solution to (4) we find that

H O = i( (t),0(t)) = (V'(1), v(t)) + (v(t), V(1)) = (Av(t),v(t)) + (v(t), Av(t)) =
= (—iHv(t),v(t)) + (v(t), —iHv(t)) = —i(Hv(t),v(t)) + i{v(t), Hv(t)) = 0, teR.
In the last step we used the fact that H is Hermitian.

As a consequence, the norm of v(t) is constant for all ¢ € R. In the case k = m the solution from
b) lives on a circle in the two-dimensional real plane.



