

Question 1 – Ion-adsorption – Pt/TiO₂ [max. 30 points]

We consider the preparation of Pt/TiO₂ catalyst via ion-adsorption from an aqueous solution of a Pt-ions. For the used TiO₂ support the PZC=5 and the specific surface area is 50 m²/g.

- a) Describe an experiment for adsorption of a Pt-ion on TiO₂. In the description include which Pt-ion you want to use and provide other key parameters of the experiment. [10 points]
- b) What is the difference between an ‘outer sphere’ complex and an ‘inner sphere’ complex after Pt-ion adsorption? Give an example of both including a simple drawing of both structures. [10 points]
- c) For a Pt-ion it has been established that the effective surface area for adsorption on titania is 1 nm²·ion⁻¹. We want to arrive at about 3 wt.% Pt loading on titania applying ion adsorption with this Pt-ion. Calculate the maximum Pt loading (wt% Pt on total mass of Pt/TiO₂) that can be achieved by Pt-ion adsorption for this titania support. Describe in 2-3 sentences how you would carry out the synthesis of 3 wt.% Pt/TiO₂. [10 points]
[Pt atomic weight = 195 g/mol; N_{av}=6.0*10²³ atoms·mol⁻¹]

Question 2 – Deposition precipitation – Ni/SiO₂ [max. 30 points]

We consider deposition precipitation (DP) for the synthesis of a silica-supported nickel catalyst (Ni/SiO₂). We start from an aqueous solution of nickel nitrate at pH=2 and urea is used as the precipitating agent. The silica support is suspended as a powder in the solution. The slurry of support and dissolved metal salt is heated to bring about the hydrolysis of urea and thereby the precipitation of nickel compounds that takes place largely at pH=6.

- a) Provide the two main chemical reaction equations that occur during the DP described above. [10 points]
- b) Sketch the pH as a function of time (0-6 hours) for this DP. [10 points]
- c) Explain in 2-3 sentences the overshoot in the pH curve that is observed after about 0.5-1.0 hours. [10 points]

Question 3 – Impregnation and drying – Co/SiO₂ (make use of the article) [max. 40 points]

Please consider the article that has been provided to you for this exam. Answer the following questions typically in 2-3 sentences per question.

- a) What scientific question(s) do the authors want to answer with this study? [10 points]
- b) What approach do they follow to answer these questions? Describe briefly the most relevant materials and techniques used. [10 points]
- c) Figure 2 contains key results on which the main conclusions of the paper are based. Describe the differences between Fig 2-a and Fig 2-b. Also describe how these differences are interpreted by the authors and which conclusions they draw from these. [10 points]
- d) Based on what you learned in this course, what criticism could you provide on this study? How would you propose to prove or disprove your criticism by extra experiments? [10 points]